US009219604B2

a2 United States Patent

(10) Patent No.: US 9,219,604 B2

Resch et al. (45) Date of Patent: Dec. 22, 2015
(54) GENERATING AN ENCRYPTED MESSAGE (56) References Cited
FOR STORAGE
U.S. PATENT DOCUMENTS
(75) Inventors: Jason K. Resch, Chicago, IL. (US); 4092732 A 5/1978 Ouchi
Wesley Leggette, Oak Park, IL (US) 5454,101 A 9/1995 Mackay et al.
5,485,474 A 1/1996 Rabin
(73) Assignee: Cleversafe, Inc., Chicago, IL (US) 5,774,643 A 6/1998 Lubbers et al.
5,802,364 A 9/1998 Senator et al.
. 5,809,285 A 9/1998 Hilland
(*) Notice: Subject. to any dlsclalmer,. the term of this 5890156 A /1999 Rék?:ta etal.
patent is extended or adjusted under 35 5987.622 A 11/1999 Lo Verso et al.
U.S.C. 154(b) by 243 days. 5,991,414 A * 11/1999 Garayetal. ... 713/165
6,012,159 A 1/2000 Fischer et al.
. 6,058,454 A 5/2000 Gerlach et al.
(21) Appl. No.: 13/449,950 6128277 A 10/2000 Bruck et al.
. 6,175,571 Bl 1/2001 Haddock et al.
(22) Filed: Apr. 18,2012 6,192,472 Bl 2/2001 Garay et al.
6,256,688 Bl 7/2001 Suetaka et al.
(65) Prior Publication Data (Continued)
US 2012/0290830 A1 Nov. 15, 2012 OTHER PUBLICATIONS
Amos Beimel et al, Secret sharing with Public Reconstruction, IEEE
1998.*
Related U.S. Application Data (Continued)
60) Provisional application No. 61/483,846, filed on M
(60) 9r02\(/)115 llona appcation o 070, Wed on My Primary Examiner — Shanto M Abedin
’ ’ (74) Attorney, Agent, or Firm — Garlick & Markison;
(51) Int.Cl Timothy W. Markison
HO4L 9/00 (2006.01) 67 ABSTRACT
GO6F 21/00 (2013.01) A method begins by a dispersed storage (DS) processing
HO4L 9/08 (2006.01) module generating a shared secret key from a public key of
HO4L 9/30 (2006.01) another entity and a private key using a first modulo prime
(52) U.S.CL polynomial function, wherein a public key is generated from
CPC H04L 9/0841 (2013.01); HO4L 973093 the private key using a second modulo prime polynomial
(2013.01) function and wherein the public key of the other entity is
(58) Field of Classification Search derived using the second modulo prime polynomial function

CPC ... GOG6F 21/79; GOG6F 21/80; HO4L 9/0841;
HO04L 9/3006; HO4L 9/3093
USPC 713/150, 160-162, 168-171, 189-193;
726/5, 6; 380/28, 30, 44, 255, 285;
711/100, 164; 709/206, 228

See application file for complete search history.

ona private key of the other entity. The method continues with
the DS module encrypting a message using the shared secret
key to produce an encrypted message. The method continues
with the DS module outputting the encrypted message to the
other entity.

22 Claims, 18 Drawing Sheets

computing device 250

r DS module 252

private key
268 generate public key module
260

lpublic key 266

other entity
public key 264

key agreement

generate shared secret key request 270
response 272
DS unit
shared secretl 36
key 262 -
data 273 encrvptt;t;s reglster request
message
password encrypt ge 276 | output encrypted 280
278 module 256 module
— = 228

|
|
|
|
|
|
|
|
: module 254
|
|
|
Il
|
]
|
|

|
|
|
|
|
|
|
)
T
|
T key agreement
|
|
|
|
|
1
t
|
|
|

______ DS unit

ecse| |1

DS unit
36

US 9,219,604 B2

Page 2
(56) References Cited 2009/0094318 A1 4/2009 Gladwin et al.
2009/0161870 Al* 6/2009 Rosenberg 380/268
U.S. PATENT DOCUMENTS 2009/0185677 Al* 7/2009 Bugbee 380/28
2009/0249072 Al* 10/2009 Kim ...cccocoerveenicrcnnnnes 713/171
6,272,658 Bl 8/2001 Steele et al. 2009/0254760 Al* 10/2009 Komar_la etal. ... 713/189
6,301,604 Bl 10/2001 Nojima 2010/0023524 Al . 1/2010 Gladwin et al.
6,356,949 Bl 3/2002 Katsandres et al. 2010/0205443 Al . 82010 Zhaoetal.ccooouenne. 713/171
6,366,995 Bl 4/2002 Vilkov et al. 2011/0107094 Al . 5/2011 R_esch et al. ... 713/168
6,374,336 Bl 4/2002 Peters et al. 2011/0213977 Al . 9/2011 Little 713/171
6,415,373 Bl 7/2002 Peters et al. 2011/0286594 Al . 11/2011 Resch et al. .. 380/46
6,418,539 Bl 7/2002 Walker 2011/0286595 Al . 11/2011 Resc_h etal. 380/46
6,449,688 Bl 0/2002 Peters et al. 2011/0289366 Al* 11/2011 Baptistetal. 714/54
6,567,948 B2 5/2003 Steele et al.
6571282 Bl 52003 Bowman-Amuah OTHER PUBLICATIONS
6,609,223 Bl 8/2003 Wolfgang . .
6,718,361 Bl 4/2004 Basani et al. Hugo Krawczyk, Secret Sharing Made Short, Springer-Verlag,
6,760,808 B2 7/2004 Peters et al. 1998.*
6,785,768 B2 8/2004 Peters et al. Shamir; How to Share a Secret; Communications of the ACM; vol.
6,785,783 B2 8/2004 Buckland 22, No. 11; Nov. 1979; pp. 612-613.
6,826,711 B2 11/2004 Moulton et al. Rabin; Efficient Dispersal of Information for Security, Load Balanc-
6,879,596 Bl 4/2005 Dooply .) i
® f ing, and Fault Tolerance; Journal of the Association for Computer
6,987,855 Bl 1/2006 Srivastavac....c..... 380/278 .
- Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.
7,003,688 Bl 2/2006 - Pittelkow et al. Chung; An Automatic Data Segmentation Method for 3D Measured
7,024,451 B2 4/2006 Jorgenson i - ° - -
7,024,609 B2 4/2006 Wo%fgang et al. Data Points; National Taiwan University; pp: 1_—8; 1998.
7,080,101 Bl 7/2006 Watson et al. Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
7,103,824 B2 9/2006 Halford Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
7,103,915 B2 9/2006 Redlich et al. pp. 1-74.
7,111,115 B2 9/2006 Peter_s et al. Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
7,140,044 B2 11/2006 Redlich etal. and Information Science, University of Konstanz; Feb. 2007; 60 pgs.
7,146,644 B2 12/2006 Redlich et al. Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes and
7,171,493 B2 1/2007 Shu et al. Matching Rules; IETF Network Working Group; RFC 4517; Jun
7,222,133 Bl 5/2007 Raipurkar et al. 2006; pp. 1-50 ’ ’ ’ '
;’%ég’é?g g% ;;388; (S:E;tif Ella L Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
7315950 BL* 1/2008 Baranskyetal. 713/193 tionalized String Preparation; IETF Network Working Group; RFC
7,636,724 B2 12/2009 de la Torre et al. 4518; Jun. 2006; pp. L-14. _
7,958,356 Bl * 6/2011 Subramanian etal. 713/171 Smith; Lightweight Directory Access Protocol (LDAP): Uniform
8,744,071 B2* 6/2014 Leggetteetal. 380/28 Resource Locator; IETF Network Working Group; RFC 4516, Jun.
8,861,727 B2* 10/2014 Reschetal.c.....c.. 380/46 2006; pp. 1-15.
2002/0062422 Al 5/2002 Butterworth et al. Smith; Lightweight Directory Access Protocol (LDAP): String Rep-
2002/0166079 Al 11/2002 Ulrich et al. resentation of Search Filters; IETF Network Working Group; RFC
2003/0018927 Al 1/2003 Gadir et al. . : -
4515; Jun. 2006; pp. 1-12.
2003/0037261 Al 2/2003 Meffert et al. Zeilenga; Lightweight Directory Access Protocol (LDAP): Directory
%88%;88228% ﬁ} ggggg ;’\}/:Ltlﬂns etal. Information Models; IETF Network Working Group; RFC 4512; Jun.
2006; pp. 1-49.
2004/0024963 Al 2/2004 Talagala et al. o . . .
2004/0083368 AL* 4/2004 Gehfmann 713/171 Sciberras; ng}_ltw_elght Directory Access Pro_tocol (LDAP): Schema
2004/0122917 Al 6/2004 Menon et al. for User Applications; IETF Network Working Group; RFC 4519,
2004/0215998 Al 10/2004 Buxton et al. Jun. 2006; pp. 1-33.
2004/0228484 Al* 11/2004 Yanagisawa 380/44 Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
2004/0228493 Al 11/2004 Maetal. tication Methods and Security Mechanisms; IETF Network Working
2005/0100022 Al 5/2005 Ramprashad Group; RFC 4513; Jun. 2006; pp. 1-32.
2005/0114594 Al 5/2005 Corbett et al. Zeilenga; Lightweight Directory Access Protocol (LDAP): Technical
%882; ggiggg ﬁ} g; %882 Eatrlfl()fget al. Specification Road Map; IETF Network Working Group; RFC 4510;
ama, - Jun. 2006; pp. 1-8.
2005/0132070 Al 6/2005 Redllc_h etal. Zeilenga; Lightweight Directory Access Protocol (LDAP): String
2005/0144382 Al 6/2005 Schmisseur . L .
5005/0229069 Al 10/2005 Hassner Representation of Distinguished Names; IETF Network Working
2006/0047907 Al 3/2006 Shiga et al. Group; RFC 4514; Jun. 2006; pp. 1-15.
2006/0136448 Al 6/2006 Cialini et al. Sermersheim; Lightweight Dlr_ectory Access Protocol (LDAP): The
2006/0156059 Al 7/2006 Kitamura Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
2006/0224603 Al 10/2006 Correll, Jr. 1-68.
2007/0079081 Al 4/2007 Gladwin et al. Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
2007/0079082 Al 4/2007 Gladwin etal. IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
2007/0079083 Al 4/2007 Gladwin et al. Xin, et al.; Evaluation of Distributed Recovery in Large-Scale Stor-
2007/0083766 Al* 4/2007 Farnhametal. ... 713/176 age Systems; 13th IEEE International Symposium on High Perfor-
%88;;8?53?;2 ﬁ} ;‘;388; CB}IIIXJOI! ot al.l mance Distributed Computing; Jun. 2004; pp. 172-181.
2007/0214285 Al 92007 A a ;Vlln otal. Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
ueta’. Persistent Storage; Proceedings of the Ninth International Confer-
2007/0234110 Al 10/2007 Soran et al. . .
2007/0283167 Al 12/2007 Venters, ITI et al. ence on Architectural Support for Programming Languages and
2008/0034216 Al* 2/2008 713/183 Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.
2008/0301459 Al* 12/2008 713/180
2009/0094251 Al 4/2009 Gladwin et al. * cited by examiner

US 9,219,604 B2

Sheet 1 of 18

Dec. 22, 2015

U.S. Patent

OT WRIsAS unndwiod

_
_
T 'Old _
e o O
_
| 8 x A 200503 | | 71 A200s03 |
— (YY) (YY)
8T 1un —— —
uigeuew sq | 77 x 120507 | [T To01507 |
gC 2400
Sunndwod

£€ aoepaul

| 8 x A20s03 |@ee | FF 1T A2dNsOT |
[]
[J
[]

| 77X 1201503 |@ee | TH1 12503 |

YT 22IA2p Jashn

0Z 1un guissadoud
Aju8a1u1 33e401S

_
_
_
_
—__1 Sunndwod

7€ 20BpIzIUI NSA

A

~

|

/
< S321|S

N

TT sa01s —° -

Y

Y

Sunndwoo

97 2100

Opolqeep |
10/78BE 3|y E1EP

V_ OF 221Ul _

_ 7€ 20B)491UI NSA _

¢ ¢

_ 7€ Suissanoud sq _

gz 2402 gunndwod

9T uun 3uissavold sq

_ ZE 2oep21UI NSQ

A

¥

7€ 3uissaooud
sa

9 8402 Sunndwod

T 921A3p Jasn

US 9,219,604 B2

Sheet 2 of 18

Dec. 22, 2015

U.S. Patent

[ADJE]
_
9/ s|npow ¥Z a|npow T 3npow doe4a3ul 0Z 3|npow 29 a|npow 9g a|npow
90e4I91UI NSA 90e4I93UI gH yseys 92E4J33UI JJomiau 9oBJAIUI YEH 9Bl SN

A

1

f

A
«&%ﬁ

20B[MAII |Dd

9
solg Woy

{

29 o|hpow
90eJJ91ul
92IA3p Q|

9g 09 20e91ul

J9||o43u02 Q| — Ol
7S AMowsw 2§ J9]|04u00 0G a|nhpow
ulew i Alowaw NEe Suissaooud

$G 11un Suissanoud
soiydeud oapin

9¢ 2402 Sunndwod

|

US 9,219,604 B2

Sheet 3 of 18

Dec. 22, 2015

U.S. Patent

G€ aweu 32inos

8% XA 92I|s BIEP PIPOI JOLID D]E| 9% T~ A 92I|S E1Ep PIPOD JOLID
aweu IS dWeu IS
® 5= N
° _ 7€ 203Ul IBUSQ _ <
— [] — []
i X T 921|s e3ep papod Jodl3 ~ P |~ v T T 921s elep papod Jodis
aweu 21§ [T~ — aweu 3§
8% X A @IS coe 97 T AdIS
elep pepo2 Jodlo Elep popo2 Jodle _ % a|hpow mwm‘_OHm _
2WeU IS ® 2Weu IS
[
— — . — p—
v¥ X 130ls cee v T 1T9ols
e1ep papol Joddd e1ep papoa Jodls
aweu adl|s aweu 201§
Z8 o|hpow pu3d
aweu ejeq | Asad | uadynep | @linea | xopula2ys
d4loads uonewJloju| Supnoy |esisAlu
yneA ; JU| sULNOY | un
7€ sweu 201|§ 0% 13lq0
— eyep
76 A 1uaws3as eep
YY) 08 3|npow ssadxde 88 SWel
— w3[qo
06 T JuUSW3as e1ep
G€ aweu 22inog 98 A
Jasn
p— (V]
0% 109[qo eiep — 3| «——>
87 a|npow Aemaled m >
g
o

al =1y

_ ASDI _ uag ynep | gl ynea

€ oWeU 324N0S

Y€ ainpouw uissanold s

US 9,219,604 B2

Sheet 4 of 18

Dec. 22, 2015

U.S. Patent

— — _
68 J01e|ndivew — — €8 Jo1eIndiuew
<> <> 1901|5-2 <> : <>
_ -ap 921)s-150d £8 90]5-9p a8 49p0d9p m_ > -ap 221)s-24d _
_
_
| _ |
_ €Z 1un |0)3u0d pjinga. | |
_
[xoousewnos | _ _ _
[) TR Jole|ndivew — — K G7 Joyeindiuew _
“ < __ > 22115-150d N oL 139015 LL 13podus A 22l1|s-2J4d < __ >
| rewsereps |]

yoouseerd3 (g | “q | "q ["q [a9 | q] q| SOl

goouserepd3 ["a] 9] 9] a] a] a] a] a]

6Ll |«

coouserepd3 [g | g | "a["a["a]| ‘q [9] q]

toyseepd1 [Tq [g q] a] 9] a] a] q|

_;g _ooo_zg_nn _QQOE (T _Ng _ooo_ q _ q _ooo_ °q _

76 1uswSas e1ep papoous Jo sUq ZE

28 o|npow pud

76 1uaWwaas eyep papodua _ _ 76-06 1uaw3das eiep

US 9,219,604 B2

Sheet 5 of 18

Dec. 22, 2015

U.S. Patent

g9 'Ol
T-W N €N 7N m_
21Aq peojAed | 21Aq peojAed | 21Aq peojAed | 21Aq peojAed <« | =
3] &
o | 2
(YY)} SO R
> S
3 z 1 0 o | 2
91Aq peojAed | 21Aq peojAed | 21Ag peojAed | 91Aq peojAed m
[
— o |
97T Yyi3ua| peojAed | 5
| @
VT Joquinu 1sanbal 3 &
= | €
aTt S| %
ZC T poAJasal 0¢T °2po2 9TT ssepo 8 g
asuodsad uonesado UOISION SSEP |[o20304d 2 g
/ : |o20304d &l =

e 110

response messag

request message 108

40

V9 OId
9€ Hun sq
97 2400
gunndwod
A
\
€ d0epaUI NSA
A
(Yeo]
9 g
i
L w peojAed
a0
2 3 pue Japeay
m 4] |[o20104d JO
v m Japeay |0o0104d
[%2) —
5 o 1207 so8essaw
> o
v g
Y

Z€ 9dea1ul NSQ

A

Y

¥€ 8uissadoud
Sa

97 2402 Sunndwod

T 92I1A3p Jash

US 9,219,604 B2

Sheet 6 of 18

Dec. 22, 2015

{7 1Uusuodxe € usuodxa Z lusuodxa T usuodxa
124035 124035 124035 12409s
¥ 2Jeys € 21eys Z aJeys T 2Jeys
pa1dAsous pa1dAioua paidAious pa1dAious e
99 9Ol
TTT peojied 60T peojAed 70T peojAed SOT peojAed
J olJeuads peojied
v Taos | €1eds | zrTaols | T 1adls r 7z howsw nsd _
— _ _
TTT-S0T peojhed || vwunsa || ewunsa |[zuwunsa || tawunsa |!
@ oueuads peojAed _ A A A _
T e | — — —
¥ €218 € €3S Z €9s T €9l
¥ zaols € 7S [ARAEIS T 7l
¥ T aoas € T s 7 1S T T92ls
TTT-G0T peojAed
D oueuads peojAed
— — — — 60T peojAed 70T peojAed
¥ T30ls € T 2s ¢ T9o0ls T T92s
11T peojied | | 60T peojAed | | ZOT peojied | | SOT peojied 1 g0T
peojAed
g oleuads peojhed
¥ € 90l|s € €2 7z €a0s T ¢ 2ls Y YY VY
¥ ¢3S € 7 3ls Z ¢9ls T 2 9ls _ € 20ep21UI NSA _
¥ T lIs € 19018 AR ACRITIS T T30S 0
TT7T peojied | | 60T peojAed | | ZOT peojied | | GOT peojied _ € Buissaooud 5@ _

U.S. Patent

V oleuads peojied

9T uun duissadold sQ

US 9,219,604 B2

Sheet 7 of 18

Dec. 22, 2015

U.S. Patent

awely NSQ 2y indino

o £

awel}
NSQ 2Y3 se Japeay [020104d 33 ysljgelsad

@9 oid

i £

p|ay y18ua| peojAed
3y31 Joj anjea paulwJalapald e ysijqelsa

A 0sT

awel} NSa 241 indino

a k

awel) NSQ 2yl aonpoud 01 Juspeay
|[020104d 3y 03 peojAed syy puadde

O

T f

P2y
yi8ua| peojAed o431 Jo} onjea e sdnpold
01 peojAed ay3 Jo sa1AQ JO Jaqunu B WNS

ot £

peojAed ayi sulwJia1sp

(o]
|

A

peojAed

peojAed e aaey 01 st aweld) (NSQ) JMoMiau
28e.l03s pasiadsip e Jay1ayM UIWIRIRP

o x

Japeay |oo0104d e adnpoud
01 pIay Yrsdus| peojAed e pue ‘pjay Jaquinu
1sanbal ay3 ‘play ssuodsal/isenbal
8y1 ‘play apoddo ayi ‘p|ay UOISIBA SSE|D
|[020104d BY) ‘p|ay SSEID |020104d BY) JSpIO

o0

BET A

play Jaquinu 1sanbal
B J0J Bn|eA Jaquinu 3sanbal e ajelauad

O

g f

p|ay asuodsau /isenbal
e 40} an|eA asuodsalfisonbad e s1essusd

T x

p|ay 2poddo ue 4oj anjea
(epoodo) spod |euonesado ue a1esausd

o

= A

p|2y UoIsJaA sse| [0d0104d
Jo} anjeA UolsJaA sse|d [020104d e 21elausd

=]

0T A

p|ay ssed [000304d
e J0J anjeA ssed [000304d e S1e1ausd

o0

= f

US 9,219,604 B2

Sheet 8 of 18

Dec. 22, 2015

U.S. Patent

93essaw
1sonbaJ Juswosude Ady pusas

Z x

a8essaw 1sanbad
awaaide Ay aonpoud 0 peojAed
pue Jjapeay |od0jo4d aie|ndod

a3 A

yidus| peojAed a1esousd
71 A
_ Ay o1jgnd juai|d 91elauad
A A
_ d awud 3jes a1es3u33
591 A
_ 8 1001 anniwiid a1e1auad
891 A

siolsweled uondAlous syelousd

O]
|

551 A

Jagqwnu 1sanbaJ a1esauald

O
—

9T A

0 = Se|} asuodsai pue
yoT = 9po2 uonesado ajelsuad

o
—

ot A

UoISJIaA Sse|d |od0304d
pue sse[d |020104d 21esouU38

Q
|

6GT Ay 21gnd juaid

8GT d u912weled swud ajes

ZST 8 1=12weded 1004 aawind

GGT sioreweded uondAious

LN

payload 1

97T Y18ua| peojAed

¥ZT 42qwinu 1sanbal

T
0= @suodsaJ
/isenbal

0ctT 8TT
(YoT) @pod | uolsian sse|d
uonesado |[020104d

gTT ssep
|[020104d

protocol header 112

key agreement request message 154

US 9,219,604 B2

Sheet 9 of 18

Dec. 22, 2015

U.S. Patent

9gessaw
asuodsal JuswaaJlde Ay puas

<
o

v A

a3essaw asuodsal
uswaaigde Asy sonpoud o1 peojAed
pue Japeay |0d0104d 21e|ndod

o)
_ yiduao| peojAed sresaussd
i)
_ aJnleudis a1eiouad
i)

wyiJog|e ainjeudis s1essuad

86T A

_ uleyd 21eoy4ad a1esauad
T)

_ Aay a11gnd Jandas 91edauad
G A

_ Q| A3 UoIssas 91esousd
zT A

_ Jaguwnu 1sanbaJ a1es3uad
i A

T = 8el} asuodsal
pue ygoT = apod uonelado a1eiauad

o r

UOISJDA SSe|d [od030J4d
pue sse[d |[020304d 91e49UD8

T

o

88T a2/meudis

9]T wyyJode ainjeudis

FST uleyd 2180413420

Z8T A9y o1gnd JanJas

08T al A3y uolssas

payload 178

97T Yrdua| peojAed

¥2T Joqwnu 1sanbau

448
T = asuodsal
Jisenbau

0CT 8TT
(YoT) epo2 | uoISIaA SSE|D
uopesado |[020304d

gTT ssepd
|[o20304d

protocol header 112

key agreement response message 176

US 9,219,604 B2

Sheet 10 of 18

Dec. 22, 2015

U.S. Patent

o3essaw 1sonbaJ J91sI3aJ puss

o
o
o

A

a8essawl 1sanbau
J31s13a4 9oanpoud o1 peojAed
pue Japeay |020104d 1e|ndod

i A
_ yi3us| peojAed a1esauad
s A
_ ainieudis alelauad
7 K

wyJo3|e aunjeudis sjessusd

veT A
aseyoed
JoloweJed paxdAious srelsusd

@ A

Al A3y uolssas aledauad
oce A

Jagquwinu 1sanbal s1es9uad
9eT A

0 = 8ely asuodsal pue
Yoz = apo2 uonesado ajelsouad

o £

UOISIaA SSe[2 [0203104d
pue sse|d |020104d 31e12U33

Vel
—
o

v1c 24neudis

Z1¢ Wylogd|e ainleusdis

0T¢ @8eyoed Jorsweled pordAious

08T qa| A9y uolissas

=]

payload 2

97T Y18ua| peojied

¥¢T1 1equinu asanbay

T
0= @suodsal
Jisenbal

octT 8TT
(yog) epoa | uolsian sse|d
uonesado |[02010.d

9TT sse|d
[sjeeatel]s]

protocol header 112

register request message 206

US 9,219,604 B2

Sheet 11 of 18

Dec. 22, 2015

U.S. Patent

93essow asuodsad 193151324 puss

[o9]
m
(@]

A

98essaw asuodsad
49151334 @onpoud 01 peojAed
pue Jspeay |020304d a1endod

V0l "Old

92t (0 =) y3dua| peojhed

9€¢ A

yidua| peojAed ajesauasd
TT »,

Jagquinu 3sonbal a1eiouad
9¢T 4,

T = Se|} asuodsai pue
yoz = 2pod uonelado arelausd

¥ZT Joqwnu 1sanbau

A

<
m
(@]

44
T=92suodsal
/isenbau

0t 8TT
(4oz) @poo | uolsian ssed
uonelado |oo030ud

9TT sse|o
|oo030ud

protocol header 112

register response

32

o

message

UOISIDA SSe|d |020304d
pue sse|d |020304d 91e49U93

No)
—
(@]

US 9,219,604 B2

Sheet 12 of 18

Dec. 22, 2015

U.S. Patent

VIT 'Ol4
9¢
un s@
o
[]
®
9¢€
Hun s@ - T T T T T T T T T T T T T I_
]
. _ _
_ 85C ___ < —
< 4 d|hpow 23essoll |-g————x 95C SInNpo | 8LC
— ! S 98essow 1dAJoua | piomssed
08¢ _ pa1dAious indino | §77 s8essow <
1sonbal Ja3s1dal | pa1dAsoua — | =77 e1ep
— 79¢C Ay _
9¢ _ 12108s paseys |
Hun sq | _
ZZ ¢ 95uodsal | >
_
Wswa2J5e Ay | ¥G¢ o|npow _
<€ 0Zc 1senbal _ A3y 121095 paleys 91eiaudd | g
uswoaide Ay X > _
— 1
¥9¢ Asy 2lignd _ “
AlQua Jaylo _ 99¢ Ay u:g:a% _
_ —_ _
_ 052 «l— |
_ a|npow A3 o1jgnd a1eJousd 89¢C
_ Ay @21enud “
e il _

0S¢ @21nep unndwoo

US 9,219,604 B2

Sheet 13 of 18

Dec. 22, 2015

U.S. Patent

Ainua Jayzo
2y} 03 98essaw padAious ayj indino

w2 x

93esssw
pa1dAJous ue aonpoud o1 Ay 19409s
paJeys ay3 Suiziih adesssw ay3 ydAious

= x

o8essaw e 21e42US ‘DiBYS PIPOIUD UR 10}

ez A

saleys
PIPOIUD JO 195 e 2onpoJd 01 e1ep apodud

T A

Ay 181008 poaJeys e 21elausd

06¢ A
Aaus Jaylo syl
woJj asuodsal Juswaalde Ay e aAladal
88T A
Alpus Jayioue
0} }sonbaJ JuswWwoaude Ay e 1hdino
38T A

A
21ead ay3 uo paseq Ay o1|gnd e a1esaussd

<
o

v8z A

Ay @1eAld e uleRlqO

o
o

78 A

a1T”

E]

US 9,219,604 B2

Sheet 14 of 18

Dec. 22, 2015

U.S. Patent

20¢€
sIET[R]

JTT 'OId
| |
_ PTE ainpow
| 98essow AjloA — _
vie _
_ 28essaw
_ 7 |
_ a8essaw _
— _
| 0Te 30¢ _
_ 3Inpow d3essaWl | g————— 3Npow d5essaW |« I —
_ paydAsous ydAsoep | 9T 98essawl | pa1dAsous anzdas 08¢
_ paidAious _ 1sanbauJ Jo3si3al
_
“ 29¢ A] 124085 padJeys % |
_ _
“ 80E 2[npoul “ 2. ¢ asuodsau >
>| A9 121095 paJeys ajesauad
_ paded | awaai8e Ay
_ < m 0Z¢C 1senbau
_ 0ze Aoy 21gnd | Wawaaige Aoy
_ _
| _
1 7Te _
_ 8T¢E a|npow A3y o11gnd s3e43U33
| A3y a1eand _
_ ¥0E aInpow s@ |
S]

00¢€ @21A9p Sunndwod

US 9,219,604 B2

Sheet 15 of 18

Dec. 22, 2015

U.S. Patent

a8essaw ay1 2101S ‘PayLIdA UBYM

o7 x

adessaw ay3 Ajlaa

o k

28essaw
e aJnydedas 01 A3y 184085 paJeys sy}
guizijnn sgessaw paidAious ayi 1dAsdsp

e x

Ay 124005 paJeys e d1edauad

@
o)

ove A

Apus Jayjo
92U} wodj sdesssw pardAious ue snledal

0|
o)

€

A

Anus Jaylo
aY3 01 asuodsal JuawaaJ8e A e indino

O
o)

€

A

1sanbau Juswaside Ay syl pue Ay
21eald ay3 uo paseq Aay dlgnd e a1esauad

e £

Alqua Jayjoue
wouj 1sonbad Juswasi3e Ay e A9l

o
)
o)

A

A3y 21eAldd B UlRlgO

o
o
o

A

art’

F|

US 9,219,604 B2

Sheet 16 of 18

Dec. 22, 2015

U.S. Patent

411 'OId

SI9AJDS UOBINUBYINE JO
19s 2y3 03 so3essaw 1senbau J93s1894 JO 19s syl Indino

s x

sadessow 1sanbad 49151891 JO 195 e 91elsusd

0LE
_ o8exoed Jajoweled JO SWOS 1SED)| 3B J03S _ _ A _wpoEm_mﬁ oo
N m a3exyoed LBQEEWO 10 22U0U AjLIaA _ 89¢ %
— _ _ sodeyoed Jo1aweled Jo 195 e 91es2Uad
— 3 d + d d 3¢ +
25Bfed 913UIRIEd B 9oNnpold o} _ saJeys pa3dAious Jo 1os e B1esouad
93eyoed Joisweded poydAious ue 3dAiosp %
— =
88¢ + _ SIU3UOMX2 124335 JO 195 e 91eJaU3
_ ainjeusis Ajlian _ L +
— 9¢€
98¢ + IENER
_ odessaw)sanbau Ja3si3al € 9AI903) _ uonesnuayine yoes Joj Ay UoISSas e suUIWIDISp
78E A 03¢ A
_ A9y UOISSS B BUIWIBP _ IEINER
— uoLednUBYINe Yoea Joy 19109 PaJeys e aujw.ialep
N : 121095 vmhm”m auIWIa19p _ 85e +
— 9 _ _ sadessow ssuodsal Juswaad8e Asy JO 195 e SAIDID
08¢ —

adessawl

asuodsaJ JusawaaJ8e A3y oyl indino
3dessawl

asuodsaJ JuswoaaJde A3y e 21esauad

0|
on)|

w0
LN
o

A

SJ9AJ3S UuoneIRUBYINE
10 19s e 0} adessaw 3sanbau Juswoaa.3e As) 2y} puoas

T 1

a8essaw 1sanbal JuswaaJi3e Ay e o1edauad

37t A 253 A
o8essow 1sonbaJ Juswooude Aoy e sAI902d _ _ Ja1senbaJ e woJj 1sonboad Ao 195 e SAI9I9)
vZE + 0%¢€ +

ERRNOTE]

US 9,219,604 B2

Sheet 17 of 18

Dec. 22, 2015

U.S. Patent

9¢1 'Ol

V<t oM

J21sanbau 03 A3y ndino

Q|
—
<

A

A3y 9onpoud 0] saleys Asy apodsp

odessaw asuodsal
Aisanooai aieys Ay pardAsous ue ndino

[2]
<

0

A

<
<

C

A

saJdeys Aoy pardAioua 1dAudap

peojAed agessaw asuodsas Alaaodal aleys
A3y pa1dAous 3y Joj sunieudis e slesausd

O
(@]
<

A

sAay o1ul sA3y papullg wJoysuely

o
<

[4

A

7oy A

peojAed a8essaw asuodsal
Asanodau aueys Aoy paidAious ue aresauss

24nleusis AjlIaA

o
(@
<

A

O
<

[4

A

aleys
A9y pordAous Bulpuodsallod e aasl1d

UoISIADI DJeYs dwes Jo sadessaw
asuodsaus AsoAaodad aleys Ay paadAious
10 Jaguwinu pjoysalyl apodIap e aAIad3l

00
<

1

A

o x

A papul|q e 91e49U93

STV A

SI9AJDS
uonedpuayine u o} sadessaw 3sanbal
AJdnooad daeys Ay pardAldus u puas

Jusuodxa 124995 Sulpuodsaliod e dA3LIIDI

= A

a k

splomssed
papul|g U 01Ul pJjomssed WJojsuely

98essaW 1sanbau
AJanooal aJeys Ady pardAlous ue sAlsdad

e A

a f

J2159nbaJ e woJj 1sanbad Asy 193 e aA19D3.

= A

US 9,219,604 B2

Sheet 18 of 18

Dec. 22, 2015

U.S. Patent

19S HuUNn §Q 031 sS=20e olell|ioe}

<
o™
<

A

Jaisenbal
243 Y1IM pa1e100SSe Uolewojul Ssa2de 2y}
duizijnn 19s 1UN SQ 2Y3 40 HuN S Yyoes 01
2dessaw 1sanbaJ uoneduayine ue puas

T k

$S900B 01 NS(4O 19S 1UN S € dUIWIIIP

(@]
<

€

A

Jo1senbal ayy
UM pPaleId0SSe UoLBWIOUl SS908 Ule1qo

% k

Ja1sanbal e woly
a8essaw 1sanbal ssad0e NS € A2

Yo)
o
<

A

US 9,219,604 B2

1
GENERATING AN ENCRYPTED MESSAGE
FOR STORAGE

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility Patent Application claims priority
pursuantto 35 U.S.C. §119(e) to U.S. Provisional Application
No. 61/483,846, entitled “Key Storage Protocol Utilizing a
Dispersed Storage Network,” filed May 9, 2011, which is
incorporated herein by reference in its entirety and made part
of'the present U.S. Utility Patent Application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

Not Applicable

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to data storage solutions within such com-
puting systems.

2. Description of Related Art

Computers are known to communicate, process, and store
data. Such computers range from wireless smart phones to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a comput-
ing system generates data and/or manipulates data from one
form into another. For instance, an image sensor of the com-
puting system generates raw picture data and, using an image
compression program (e.g., JPEG, MPEG, etc.), the comput-
ing system manipulates the raw picture data into a standard-
ized compressed image.

With continued advances in processing speed and commu-
nication speed, computers are capable of processing real time
multimedia data for applications ranging from simple voice
communications to streaming high definition video. As such,
general-purpose information appliances are replacing pur-
pose-built communications devices (e.g., a telephone). For
example, smart phones can support telephony communica-
tions but they are also capable of text messaging and access-
ing the internet to perform functions including email, web
browsing, remote applications access, and media communi-
cations (e.g., telephony voice, image transfer, music files,
video files, real time video streaming. etc.).

Eachtype of computer is constructed and operates in accor-
dance with one or more communication, processing, and
storage standards. As a result of standardization and with
advances in technology, more and more information content
is being converted into digital formats. For example, more
digital cameras are now being sold than film cameras, thus
producing more digital pictures. As another example, web-
based programming is becoming an alternative to over the air
television broadcasts and/or cable broadcasts. As further
examples, papers, books, video entertainment, home video,
etc. are now being stored digitally, which increases the
demand on the storage function of computers.

A typical computer storage system includes one or more
memory devices aligned with the needs of the various opera-
tional aspects of the computer’s processing and communica-
tion functions. Generally, the immediacy of access dictates

10

15

20

25

30

35

40

45

50

55

60

65

2

what type of memory device is used. For example, random
access memory (RAM) memory can be accessed in any ran-
dom order with a constant response time, thus it is typically
used for cache memory and main memory. By contrast,
memory device technologies that require physical movement
such as magnetic disks, tapes, and optical discs, have a vari-
able response time as the physical movement can take longer
than the data transfer, thus they are typically used for second-
ary memory (e.g., hard drive, backup memory, etc.).

A computer’s storage system will be compliant with one or
more computer storage standards that include, but are not
limited to, network file system (NFS), flash file system (FFS),
disk file system (DFS), small computer system interface
(SCSI), internet small computer system interface (iSCSI), file
transfer protocol (FTP), and web-based distributed authoring
and versioning (WebDAV). These standards specify the data
storage format (e.g., files, data objects, data blocks, directo-
ries, etc.) and interfacing between the computer’s processing
function and its storage system, which is a primary function
of the computer’s memory controller.

Despite the standardization of the computer and its storage
system, memory devices fail; especially commercial grade
memory devices that utilize technologies incorporating
physical movement (e.g., a disc drive). For example, it is
fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of use.
One solution is to utilize a higher-grade disc drive, which
adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant
disc drives to replicate the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID con-
troller adds parity data to the original data before storing it
across the array. The parity data is calculated from the original
data such that the failure of a disc will not result in the loss of
the original data. For example, RAID 5 uses three discs to
protect data from the failure of a single disc. The parity data,
and associated redundancy overhead data, reduces the storage
capacity of three independent discs by one third (e.g.,
nl=capacity). RAID 6 can recover from a loss of two discs
and requires a minimum of four discs with a storage capacity
ofn-2.

While RAID addresses the memory device failure issue, it
is not without its own failure issues that affect its effective-
ness, efficiency and security. For instance, as more discs are
added to the array, the probability of a disc failure increases,
which increases the demand for maintenance. For example,
when a disc fails, it needs to be manually replaced before
another disc fails and the data stored in the RAID device is
lost. To reduce the risk of data loss, data on a RAID device is
typically copied on to one or more other RAID devices. While
this addresses the loss of data issue, it raises a security issue
since multiple copies of data are available, which increases
the chances of unauthorized access. Further, as the amount of
data being stored grows, the overhead of RAID devices
becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the present invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present invention;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
present invention;

US 9,219,604 B2

3

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the present invention;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the present
invention;

FIG. 6A is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 6B is a diagram of an embodiment of a message
format in accordance with the present invention;

FIG. 6C is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 6D is a flowchart illustrating an example of generating
aprotocol header of a dispersed storage network (DSN) frame
in accordance with the present invention;

FIG. 7A is a diagram illustrating an example of a read
request message format in accordance with the present inven-
tion;

FIG. 7B is a flowchart illustrating an example of generating
a read request message in accordance with the present inven-
tion;

FIG. 8A is a diagram illustrating an example of a read
response message format in accordance with the present
invention;

FIG. 8B is a flowchart illustrating an example of generating
a read response message in accordance with the present
invention;

FIG. 9A is a diagram illustrating an example of a register
request message format in accordance with the present inven-
tion;

FIG. 9B is a flowchart illustrating an example of generating
a register request message in accordance with the present
invention;

FIG. 10A is a diagram illustrating an example of a register
response message format in accordance with the present
invention;

FIG. 10B is a flowchart illustrating an example of gener-
ating a register response message in accordance with the
present invention;

FIG. 11A is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 11B is a flowchart illustrating an example of encrypt-
ing a message in accordance with the present invention;

FIG. 11C is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 11D is a flowchart illustrating an example of decrypt-
ing an encrypted message in accordance with the present
invention;

FIG. 11E is a flowchart illustrating an example of storing a
key in accordance with the present invention;

FIG. 11F is a flowchart illustrating an example of storing an
encrypted key share in accordance with the present invention;

FIG. 12A is a flowchart illustrating example of retrieving a
key in accordance with the present invention;

FIG. 12B is a flowchart illustrating an example of retriev-
ing an encrypted key share in accordance with the present
invention; and

FIG. 13 is a flowchart illustrating an example of facilitating
access to a dispersed storage network (DSN) in accordance
with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1is a schematic block diagram of a computing system
10 that includes one or more of a first type of user devices 12,

10

15

20

25

30

35

40

45

50

55

60

65

4

one or more of a second type of user devices 14, at least one
distributed storage (DS) processing unit 16, at least one DS
managing unit 18, at least one storage integrity processing
unit 20, and a distributed storage network (DSN) memory 22
coupled via a network 24. The network 24 may include one or
more wireless and/or wire lined communication systems; one
or more private intranet systems and/or public internet sys-
tems; and/or one or more local area networks (LAN) and/or
wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data of the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee, etc.).

Each ofthe user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity processing
unit 20 may be a portable computing device (e.g., a social
networking device, a gaming device, a cell phone, a smart
phone, a personal digital assistant, a digital music player, a
digital video player, a laptop computer, a handheld computer,
avideo game controller, and/or any other portable device that
includes a computing core) and/or a fixed computing device
(e.g., a personal computer, a computer server, a cable set-top
box, a satellite receiver, a television set, a printer, a fax
machine, home entertainment equipment, a video game con-
sole, and/or any type of home or office computing equip-
ment). Such a portable or fixed computing device includes a
computing core 26 and one or more interfaces 30, 32, and/or
33. An embodiment of the computing core 26 will be
described with reference to FIG. 2.

With respect to the interfaces, each of the interfaces 30, 32,
and 33 includes software and/or hardware to support one or
more communication links via the network 24 indirectly and/
or directly. For example, interfaces 30 support a communica-
tion link (wired, wireless, direct, via a LAN, via the network
24, etc.) between the first type of user device 14 and the DS
processing unit 16. As another example, DSN interface 32
supports a plurality of communication links via the network
24 between the DSN memory 22 and the DS processing unit
16, the first type of user device 12, and/or the storage integrity
processing unit 20. As yet another example, interface 33
supports a communication link between the DS managing
unit 18 and any one of the other devices and/or units 12, 14,
16, 20, and/or 22 via the network 24.

In general and with respect to data storage, the system 10
supports three primary functions: distributed network data
storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with
these three primary functions, data can be distributedly stored
in a plurality of physically different locations and subse-
quently retrieved in a reliable and secure manner regardless of
failures of individual storage devices, failures of network
equipment, the duration of storage, the amount of data being
stored, attempts at hacking the data, etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include establish-
ing distributed data storage parameters, performing network
operations, performing network administration, and/or per-
forming network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g., allo-
cation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established for
a user group of devices, established for public access by the
user devices, etc.). For example, the DS managing unit 18
coordinates the creation of a vault (e.g., a virtual memory

US 9,219,604 B2

5

block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing unit
18 also determines the distributed data storage parameters for
the vault. In particular, the DS managing unit 18 determines a
number of slices (e.g., the number that a data segment of a
data file and/or data block is partitioned into for distributed
storage) and a read threshold value (e.g., the minimum num-
ber of slices required to reconstruct the data segment).

As another example, the DS managing module 18 creates
and stores, locally or within the DSN memory 22, user profile
information. The user profile information includes one or
more of authentication information, permissions, and/or the
security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS manag-
ing unit 18 tracks the number of times a user accesses a private
vault and/or public vaults, which can be used to generate a
per-access bill. In another instance, the DS managing unit 18
tracks the amount of data stored and/or retrieved by a user
device and/or a user group, which can be used to generate a
per-data-amount bill.

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the system 10 for poten-
tial failures, determines the devices’ and/or unit’ activation
status, determines the devices’ and/or units’ loading, and any
other system level operation that affects the performance
level of the system 10. For example, the DS managing unit 18
receives and aggregates network management alarms, alerts,
errors, status information, performance information, and
messages from the devices 12-14 and/or the units 16, 20, 22.
For example, the DS managing unit 18 receives a simple
network management protocol (SNMP) message regarding
the status of the DS processing unit 16.

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the system 10 that
needs replacing, upgrading, repairing, and/or expanding. For
example, the DS managing unit 18 determines that the DSN
memory 22 needs more DS units 36 or that one or more of the
DS units 36 needs updating.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data file 38
and/or data block 40 to store in the DSN memory 22, it sends
the data file 38 and/or data block 40 to the DS processing unit
16 via its interface 30. As will be described in greater detail
with reference to FIG. 2, the interface 30 functions to mimic
a conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS), disk
file system (DFS), file transfer protocol (FTP), web-based
distributed authoring and versioning (WebDAV), etc.) and/or
a block memory interface (e.g., small computer system inter-
face (SCSI), internet small computer system interface
(iSCSI), etc.). In addition, the interface 30 may attach a user
identification code (ID) to the data file 38 and/or data block
40.

The DS processing unit 16 receives the data file 38 and/or
data block 40 via its interface 30 and performs a distributed
storage (DS) process 34 thereon (e.g., an error coding dis-
persal storage function). The DS processing 34 begins by
partitioning the data file 38 and/or data block 40 into one or

10

15

20

25

30

35

40

45

50

55

60

65

6

more data segments, which is represented as Y data segments.
For example, the DS processing 34 may partition the data file
38 and/or data block 40 into a fixed byte size segment (e.g., 2"
to 2” bytes, where n=>2) or a variable byte size (e.g., change
byte size from segment to segment, or from groups of seg-
ments to groups of segments, etc.).

For eachoftheY data segments, the DS processing 34 error
encodes (e.g., forward error correction (FEC), information
dispersal algorithm, or error correction coding) and slices (or
slices then error encodes) the data segment into a plurality of
error coded (EC) data slices 42-48, which is represented as X
slices per data segment. The number of slices (X) per seg-
ment, which corresponds to a number of pillars n, is set in
accordance with the distributed data storage parameters and
the error coding scheme. For example, if a Reed-Solomon (or
other FEC scheme) is used in an n/k system, then a data
segment is divided into n slices, where k number of slices is
needed to reconstruct the original data (i.e., k is the thresh-
old). As a few specific examples, the n/k factor may be 5/3;
6/4; 8/6; 8/5; 16/10.

For each EC slice 42-48, the DS processing unit 16 creates
a unique slice name and appends it to the corresponding EC
slice 42-48. The slice name includes universal DSN memory
addressing routing information (e.g., virtual memory
addresses in the DSN memory 22) and user-specific informa-
tion (e.g., user ID, file name, data block identifier, etc.).

The DS processing unit 16 transmits the plurality of EC
slices 42-48 to a plurality of DS units 36 of the DSN memory
22 via the DSN interface 32 and the network 24. The DSN
interface 32 formats each of the slices for transmission via the
network 24. For example, the DSN interface 32 may utilize an
internet protocol (e.g., TCP/IP, etc.) to packetize the EC slices
42-48 for transmission via the network 24.

The number of DS units 36 receiving the EC slices 42-48 is
dependent on the distributed data storage parameters estab-
lished by the DS managing unit 18. For example, the DS
managing unit 18 may indicate that each slice is to be stored
in a different DS unit 36. As another example, the DS man-
aging unit 18 may indicate that like slice numbers of different
data segments are to be stored in the same DS unit 36. For
example, the first slice of each of the data segments is to be
stored in a first DS unit 36, the second slice of each of the data
segments is to be stored in a second DS unit 36, etc. In this
manner, the data is encoded and distributedly stored at physi-
cally diverse locations to improve data storage integrity and
security.

Each DS unit 36 that receives an EC slice 42-48 for storage
translates the virtual DSN memory address of the slice into a
local physical address for storage. Accordingly, each DS unit
36 maintains a virtual to physical memory mapping to assist
in the storage and retrieval of data.

The first type of user device 12 performs a similar function
to store data in the DSN memory 22 with the exception that it
includes the DS processing. As such, the device 12 encodes
and slices the data file and/or data block it has to store. The
device then transmits the slices 11 to the DSN memory via its
DSN interface 32 and the network 24.

For a second type of user device 14 to retrieve a data file or
data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS units
36 storing the slices of the data file and/or data block based on
the read command. The DS processing unit 16 may also
communicate with the DS managing unit 18 to verify that the
user device 14 is authorized to access the requested data.

Assuming that the user device is authorized to access the
requested data, the DS processing unit 16 issues slice read

US 9,219,604 B2

7

commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10error coding scheme). Each of the DS units 36 receiving
the slice read command, verifies the command, accesses its
virtual to physical memory mapping, retrieves the requested
slice, or slices, and transmits it to the DS processing unit 16.

Once the DS processing unit 16 has received a read thresh-
old number of slices for a data segment, it performs an error
decoding function and de-slicing to reconstruct the data seg-
ment. When Y number of data segments has been recon-
structed, the DS processing unit 16 provides the data file 38
and/or data block 40 to the user device 14. Note that the first
type of user device 12 performs a similar process to retrieve a
data file and/or data block.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 45, and/or slice names, of a data file or data
block of a user device to verify that one or more slices have
not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.

If the storage integrity processing unit 20 determines that
one or more slices is corrupted or lost, it rebuilds the cor-
rupted or lost slice(s) in accordance with the error coding
scheme. The storage integrity processing unit 20 stores the
rebuild slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50, a
memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface 60, at least one 10 device interface module 62, a read
only memory (ROM) basic input output system (BIOS) 64,
and one or more memory interface modules. The memory
interface module(s) includes one or more of a universal serial
bus (USB) interface module 66, a host bus adapter (HBA)
interface module 68, a network interface module 70, a flash
interface module 72, a hard drive interface module 74, and a
DSN interface module 76. Note the DSN interface module 76
and/or the network interface module 70 may function as the
interface 30 of the user device 14 of FIG. 1. Further note that
the 10 device interface module 62 and/or the memory inter-
face modules may be collectively or individually referred to
as 10 ports.

FIG. 3 is a schematic block diagram of an embodiment of
adispersed storage (DS) processing module 34 of user device
12 and/or of the DS processing unit 16. The DS processing
module 34 includes a gateway module 78, an access module
80, a grid module 82, and a storage module 84. The DS
processing module 34 may also include an interface 30 and
the DSnet interface 32 or the interfaces 68 and/or 70 may be
part of user device 12 or of the DS processing unit 16. The DS
processing module 34 may further include a bypass/feedback
path between the storage module 84 to the gateway module
78. Note that the modules 78-84 of the DS processing module
34 may be in a single unit or distributed across multiple units.

In an example of storing data, the gateway module 78
receives an incoming data object that includes a user ID field
86, an object name field 88, and the data object field 40 and
may also receive corresponding information that includes a
process identifier (e.g., an internal process/application ID),
metadata, a file system directory, a block number, a transac-
tion message, a user device identity (ID), a data object iden-
tifier, a source name, and/or user information. The gateway
module 78 authenticates the user associated with the data

10

15

20

25

30

35

40

45

50

55

60

65

8

object by veritying the user ID 86 with the DS managing unit
18 and/or another authenticating unit.

When the user is authenticated, the gateway module 78
obtains user information from the management unit 18, the
user device, and/or the other authenticating unit. The user
information includes a vault identifier, operational param-
eters, and user attributes (e.g., user data, billing information,
etc.). A vault identifier identifies a vault, which is a virtual
memory space that maps to a set of DS storage units 36. For
example, vault 1 (i.e., user 1’s DSN memory space) includes
eight DS storage units (X=8 wide) and vault 2 (i.e., user 2’s
DSN memory space) includes sixteen DS storage units (X=16
wide). The operational parameters may include an error cod-
ing algorithm, the width n (number of pillars X or slices per
segment for this vault), a read threshold T, a write threshold,
an encryption algorithm, a slicing parameter, a compression
algorithm, an integrity check method, caching settings, par-
allelism settings, and/or other parameters that may be used to
access the DSN memory layer.

The gateway module 78 uses the user information to assign
a source name 35 to the data. For instance, the gateway
module 78 determines the source name 35 of the data object
40 based on the vault identifier and the data object. For
example, the source name may contain a file identifier (ID), a
vault generation number, a reserved field, and a vault identi-
fier (ID). As another example, the gateway module 78 may
generate the file ID based on a hash function of the data object
40. Note that the gateway module 78 may also perform mes-
sage conversion, protocol conversion, electrical conversion,
optical conversion, access control, user identification, user
information retrieval, traffic monitoring, statistics generation,
configuration, management, and/or source name determina-
tion.

The access module 80 receives the data object 40 and
creates a series of data segments 1 through Y 90-92 in accor-
dance with a data storage protocol (e.g., file storage system, a
block storage system, and/or an aggregated block storage
system). The number of segments Y may be chosen or ran-
domly assigned based on a selected segment size and the size
of the data object. For example, if the number of segments is
chosen to be a fixed number, then the size of the segments
varies as a function of the size of the data object. For instance,
if the data object is an image file of 4,194,304 eight bit bytes
(e.g., 33,554,432 bits) and the number of segments Y=131,
072, then each segment is 256 bits or 32 bytes. As another
example, if segment size is fixed, then the number of seg-
ments Y varies based on the size of data object. For instance,
if the data object is an image file of 4,194,304 bytes and the
fixed size of each segment is 4,096 bytes, then the number of
segments Y=1,024. Note that each segment is associated with
the same source name.

The grid module 82 receives the data segments and may
manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding dis-
persal storage function to produce a pre-manipulated data
segment. After manipulating a data segment, if applicable, the
grid module 82 error encodes (e.g., Reed-Solomon, Convo-
Iution encoding, Trellis encoding, etc.) the data segment or
manipulated data segment into X error coded data slices
42-44.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal func-
tion include a read threshold T, a write threshold W, etc. The
read threshold (e.g., T=10, when X=16) corresponds to the
minimum number of error-free error coded data slices

US 9,219,604 B2

9

required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10=6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module indi-
cates proper storage of the encoded data segment. Note that
the write threshold is greater than or equal to the read thresh-
old for a given number of pillars (X).

For each data slice of a data segment, the grid module 82
generates a unique slice name 37 and attaches it thereto. The
slice name 37 includes a universal routing information field
and a vault specific field and may be 48 bytes (e.g., 24 bytes
for each of the universal routing information field and the
vault specific field). As illustrated, the universal routing infor-
mation field includes a slice index, a vault ID, a vault genera-
tion, and a reserved field. The slice index is based on the pillar
number and the vault ID and, as such, is unique for each pillar
(e.g., slices of the same pillar for the same vault for any
segment will share the same slice index). The vault specific
field includes a data name, which includes a file ID and a
segment number (e.g., a sequential numbering of data seg-
ments 1-Y of a simple data object or a data block number).

Prior to outputting the error coded data slices of a data
segment, the grid module may perform post-slice manipula-
tion on the slices. If enabled, the manipulation includes slice
level compression, encryption, CRC, addressing, tagging,
and/or other manipulation to improve the effectiveness of the
computing system.

When the error coded data slices of a data segment are
ready to be outputted, the grid module 82 determines which of
the DS storage units 36 will store the EC data slices based on
a dispersed storage memory mapping associated with the
user’s vault and/or DS storage unit attributes. The DS storage
unit attributes may include availability, self-selection, perfor-
mance history, link speed, link latency, ownership, available
DSN memory, domain, cost, a prioritization scheme, a cen-
tralized selection message from another source, a lookup
table, data ownership, and/or any other factor to optimize the
operation of the computing system. Note that the number of
DS storage units 36 is equal to or greater than the number of
pillars (e.g., X) so that no more than one error coded data slice
of'the same data segment is stored on the same DS storage unit
36. Further note that EC data slices of the same pillar number
but of different segments (e.g., EC data slice 1 of data segment
1 and EC data slice 1 of data segment 2) may be stored on the
same or different DS storage units 36.

The storage module 84 performs an integrity check on the
outbound encoded data slices and, when successful, identifies
aplurality of DS storage units based on information provided
by the grid module 82. The storage module 84 then outputs
the encoded data slices 1 through X of each segment 1
through'Y to the DS storage units 36. Each of the DS storage
units 36 stores its EC data slice(s) and maintains a local
virtual DSN address to physical location table to convert the
virtual DSN address of the EC data slice(s) into physical
storage addresses.

In an example of a read operation, the user device 12 and/or
14 sends a read request to the DS processing unit 16, which
authenticates the request. When the request is authentic, the
DS processing unit 16 sends a read message to each of the DS
storage units 36 storing slices of the data object being read.
The slices are received via the DSnet interface 32 and pro-
cessed by the storage module 84, which performs a parity
check and provides the slices to the grid module 82 when the
parity check was successtul. The grid module 82 decodes the
slices in accordance with the error coding dispersal storage

25

30

35

40

45

55

10

function to reconstruct the data segment. The access module
80 reconstructs the data object from the data segments and the
gateway module 78 formats the data object for transmission
to the user device.

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-slice
manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85,
a de-slicer 87, and/or a post-slice de-manipulator 89. Note
that the control unit 73 may be partially or completely exter-
nal to the grid module 82. For example, the control unit 73
may be part of the computing core at a remote location, part of
auser device, part of the DS managing unit 18, or distributed
amongst one or more DS storage units.

In an example of write operation, the pre-slice manipulator
75 receives a data segment 90-92 and a write instruction from
anauthorized user device. The pre-slice manipulator 75 deter-
mines if pre-manipulation of the data segment 90-92 is
required and, if so, what type. The pre-slice manipulator 75
may make the determination independently or based on
instructions from the control unit 73, where the determination
is based on a computing system-wide predetermination, a
table lookup, vault parameters associated with the user iden-
tification, the type of data, security requirements, available
DSN memory, performance requirements, and/or other meta-
data.

Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 90-92 in accor-
dance with the type of manipulation. For example, the type of
manipulation may be compression (e.g., Lempel-Ziv-Welch,
Huffman, Golomb, fractal, wavelet, etc.), signatures (e.g.,
Digital Signature Algorithm (DSA), Elliptic Curve DSA,
Secure Hash Algorithm, etc.), watermarking, tagging,
encryption (e.g., Data Encryption Standard, Advanced
Encryption Standard, etc.), adding metadata (e.g., time/date
stamping, user information, file type, etc.), cyclic redundancy
check (e.g., CRC32), and/or other data manipulations to pro-
duce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data segment
92 using a forward error correction (FEC) encoder (and/or
other type of erasure coding and/or error coding) to produce
an encoded data segment 94. The encoder 77 determines
which forward error correction algorithm to use based on a
predetermination associated with the user’s vault, a time
based algorithm, user direction, DS managing unit direction,
control unit direction, as a function of the data type, as a
function of the data segment 92 metadata, and/or any other
factor to determine algorithm type. The forward error correc-
tion algorithm may be Golay, Multidimensional parity, Reed-
Solomon, Hamming, Bose Ray Chauduri Hocquenghem
(BCH), Cauchy-Reed-Solomon, or any other FEC encoder.
Note that the encoder 77 may use a different encoding algo-
rithm for each data segment 92, the same encoding algorithm
for the data segments 92 of a data object, or a combination
thereof.

The encoded data segment 94 is of greater size than the data
segment 92 by the overhead rate of the encoding algorithm by
a factor of X/T, where X is the width or number of slices, and
T is the read threshold. In this regard, the corresponding
decoding process can accommodate at most X-T missing EC
data slices and still recreate the data segment 92. For example,
if X=16 and T=10, then the data segment 92 will be recover-
able as long as 10 or more EC data slices per segment are not
corrupted.

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 92. For example, if

US 9,219,604 B2

11

the slicing parameter is X=16, then the slicer 79 slices each
encoded data segment 94 into 16 encoded slices.

The post-slice manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-slice manipulator 81 determines
the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or other
metadata. Note that the type of post-slice manipulation may
include slice level compression, signatures, encryption, CRC,
addressing, watermarking, tagging, adding metadata, and/or
other manipulation to improve the effectiveness of the com-
puting system.

In an example of a read operation, the post-slice de-ma-
nipulator 89 receives at least a read threshold number of EC
data slices and performs the inverse function of the post-slice
manipulator 81 to produce a plurality of encoded slices. The
de-slicer 87 de-slices the encoded slices to produce an
encoded data segment 94. The decoder 85 performs the
inverse function of the encoder 77 to recapture the data seg-
ment 90-92. The pre-slice de-manipulator 83 performs the
inverse function of the pre-slice manipulator 75 to recapture
the data segment 90-92.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the encoded
data segment 94 includes thirty-two bits, but may include
more or less bits. The slicer 79 disperses the bits of the
encoded data segment 94 across the EC data slices in a pattern
as shown. As such, each EC data slice does not include con-
secutive bits of the data segment 94 reducing the impact of
consecutive bit failures on data recovery. For example, if EC
data slice 2 (which includes bits 1, 5, 9,13, 17, 25, and 29) is
unavailable (e.g., lost, inaccessible, or corrupted), the data
segment can be reconstructed from the other EC data slices
(e.g., 1, 3 and 4 for a read threshold of 3 and a width of 4).

FIG. 6A is a schematic block diagram of another embodi-
ment of a computing system that includes a user device 12 and
a dispersed storage (DS) unit 36. The user device 12 includes
a computing core 26 and a dispersed storage network (DSN)
interface 32. The computing core 26 includes a DS processing
34. The DS unit 36 includes a computing core 26 and the DSN
interface 32. The user device 12 and the DS unit 36 are
operably coupled via a local area network, a wide area net-
work, the internet, et cetera to enable the DSN interface 32 of
the user device 12 and of the DS unit 36 to communicate. The
DSN interface 32 of the user device 12 and/or of the DS unit
36 generates one or more DSN frames to communicate a
message 102 therebetween. The DSN frame includes a pro-
tocol header and may further include a payload. A format of
the DSN frame is discussed in greater detail with reference to
FIG. 6B.

A message 102 may be a request message 104, 108 (e.g.,
key agreement, register, read, write, checked write, write
commit, write rollback, write finalize, write undo, check
request, list request, and/or list digest request) or a response
message 106, 110. For example, user device 12, as a
requester, generates a request message 104, 108 and sends it
to DS unit 36. DS unit 36, as aresponder, generates a response
message 106, 110 and sends it to user device 12. In this
example, the DS processing 34 of the user device 12 (e.g., the
requester) generates a request and outputs the request to the
DSN interface 32 of the user device 12. The DSN interface 32
of the user device 12 formats the request into the request
message 104 (which includes a DSN frame or DSN frames)
and sends it to the DS unit 36 (e.g., the responder). The DSN

15

20

25

30

40

45

55

12

interface of the DS unit 36 extracts the request from the
request message 104 and provides the request to the comput-
ing core 26, which generates a response thereto. The comput-
ing core 26 provides the response to the DSN interface 32 of
the DS unit 36, which formats the response into the response
message 106 (which includes one or more DSN frames) and
sends it to user device 12.

Requester and responder roles may change depending on
which device of the system initiates the request/response
message pair. For example, DS unit 36 (e.g., the requester)
generates a request message 108 and sends it to the user
device 12 (e.g., the responder). The user device 12 generates
aresponse message 110 and sends it to the DS unit 36. Various
modules and/or units of the system may utilize the request/
response message pairs. In addition, a request may send a
request message 104, 108 to multiple responders in a series
and/or parallel manner as will be discussed in greater detail
with reference to FIG. 6C.

FIG. 6B is a diagram of an embodiment of a response or
request message formatted as a dispersed storage network
(DSN) frame. The DSN frame includes a protocol header 112
and may further include a payload 114. The protocol header
112 includes information to request action and/or provide
status. The payload 114 includes M payload bytes of supple-
mental information utilized in further action and/or in a
response related to the information in the protocol header
112.

In an example, the protocol header 112 includes one or
more of a protocol class field 116, a protocol class version
field 118, an operation code field 120, arequest/response field
122, a request number field 124, and a payload length field
126. The protocol class field 116 contains a number of bytes
to specify a sub-protocol identifier to enable a plurality of
families of protocols to be utilized. For example, the protocol
class field 116 is one byte in length and includes a protocol
class value of 01 hex to signify a first protocol class. The
protocol class version field 118 contains a number of bytes to
specify a sub-protocol version associated with the protocol
class 116 enabling a plurality of versions of protocols to be
utilized with each protocol class. For example, the protocol
class version field is one byte in length and includes a protocol
class version value of 01 hex to signify a first protocol class
version.

The operation code field 120 contains a number of bytes to
specify an operation code associated with a requested action
providing message interpretation instructions to a message
target. For example, the operation code field is one byte in
length and includes an operation code value of a read opera-
tion. The request/response field 122 contains a number of
bytes to specify whether the message is a request message or
a response message. For example, the request/response field
122 is one byte in length and a one-bit flag of the byte (e.g., a
most significant bit of the byte) indicates a response/reserve
value. For example, a flag value of zero indicates that the
message is a request message and a flag value of one indicates
that the message is a response message.

The request number fiecld 124 contains a number of bytes to
include a request number value to associate at least one
request message with at least one response message. The
request number value may be produced as at least one of a
random number, a random number plus a predetermined
number, and based on a previous request number. For
example, the request number field 124 is four bytes in length
and includes a request number value of 457 to associate a read
request message with a read response message when the
previous request number value is 456. As another example,
the request number field 124 includes a request number value

US 9,219,604 B2

13

of 5,358 to associate a read response message with a read
request message when a request number value of 5,358 is
extracted from the read request message.

The payload length field 126 contains a number of bytes to
include a payload length value to indicate a number of bytes
contained in the payload 114. The payload length value may
be determined based on one or more of counting bytes of the
payload 114, utilizing a predetermined number based on one
or more of the protocol class value, the protocol class version
value, the operation code value, and the response/reserved
value. For example, the payload length field 126 is four bytes
in length and includes a payload length value of zero when the
operation code value is associated with a write rollback
response operation and the response/reserved value is asso-
ciated with a response message. As another example, the
payload length field 126 includes a payload length value of
104 when the operation code value is associated with a read
request message and a predetermined formula of 48n+8 asso-
ciated with the read request message is utilized (e.g., where
n=2 corresponding to 2 slice names).

The payload 114 may be organized into one or more pay-
load fields in accordance with one or more of the values of the
protocol class field 116, protocol class version field 118, the
operation code field 120, and the request/response field 122.
The one or more payload fields include payload bytes 0-M,
wherein values of the payload bytes 0-M are established in
accordance with the one or more payload fields. For example,
the one or more payload fields include slice name fields when
the payload 114 is associated with a read request DSN frame.
As another example, the one or more payload fields include
one or more encoded data slices when the payload 114 is
associated with a read response DSN frame.

FIG. 6C is a schematic block diagram of another embodi-
ment of a computing system that includes a dispersed storage
(DS) processing unit 16 and dispersed storage network
(DSN) memory 22 operable to process a plurality of payload
scenarios A-E. The DS processing unit 16 includes a DS
processing 34 and a DSN interface 32. The DSN memory 22
includes DS units 1-4 when dispersed storage error coding
parameters include a pillar width of 4. The DS processing unit
16 generates one or more request DSN frames (e.g., a com-
mon DSN frame for the DS units or an individual frame for
each DS unit) wherein each DSN frame includes a payload.
The DS processing unit 16 sends the one or more request DSN
frames to DS units 1-4. For example, the DS processing unit
16 sends a first DSN frame that includes a payload 105 to DS
unit 1, sends a second DSN frame that includes a payload 107
to DS unit 2, sends a third DSN frame that includes a payload
107 to DS unit 3, and sends a fourth DSN frame that includes
a payload 111 to DS unit 4. Each payload 105-111 may
contain unique data or may contain the same data. As a
specific example, the DS processing unit 16 produces a plu-
rality of encoded data slices, generates one or more write
request messages that include the plurality of encoded data
slices within one or more write request DSN frames, and
sends the one or more write request DSN frames to the DSN
memory 22 to facilitate storing the plurality of encoded data
slices in the DS units 1-4. As another specific example, the DS
processing unit 16 produces a plurality of encrypted shares,
generates one or more write request messages that include the
plurality of encrypted shares within one or more write request
DSN frames, and sends the one or more write request DSN
frames to the DSN memory 22 to facilitate storing the plural-
ity of encrypted shares in the DS units 1-4.

In an example of operation, the DS processing 34 dispersed
storage error encodes data utilizing the dispersed storage
error coding parameters to produce 3 sets of encoded data

20

30

40

45

55

14

slices 1_1 through 3_4 (e.g., set one includes slices 1-1
through 1_4). The DS processing 34 outputs a write request
that includes three sets of encoded data slices to the DSN
interface 32. The DSN interface 32 generates at least one
write request DSN frame that includes a payload section,
which includes an encoded data slice(s) of the three sets of
encoded data slices. The DSN interface 32 sends the write
request DSN frame(s) to the DS units 1-4. For instance, the
DS interface 32 sends the write request DSN frame that
includes payload 105 to DS unit 1; sends the write request
DSN frame that includes payload 107 to DS unit 2; sends the
write request DSN frame that includes payload 109 to DS unit
3: and sends the write request DSN frame that includes pay-
load 111 to DS unit 4.

The DS processing unit 16 selects an encoded data slice to
include in each of the payloads 105-111 in one of a variety of
ways. For example, the DS processing unit 16 selects slices
having the same pillar number to include in a payload (e.g.,
pillar one slices of the sets of encoded data slices are included
in the payload 105). As another example, DS processing unit
16 selects the encoded data slices of a set of encoded data
slices to include in a payload. As yet another example, the DS
processing unit 16 selects a slice to include in the payload. As
a further example, the DS processing unit 16 selects the
encoded data slices of the three sets of encoded data slices to
include in the payload.

The payload scenarios A-D represent example scenarios
indicating which encoded data slices of the three sets of
encoded data slices are included in the payloads 105-107.
Payload scenario A represents a scenario where the DS pro-
cessing unit 16 selects all slices of the corresponding pillar of
the three sets of encoded data slices per payload. For example,
the DS processing unit 16 selects slices 1_1,2_1, and 3_1 of
pillar 1to be included in payload 105, slices 1_2,2_2,and3_2
of pillar 2 to be included in payload 107, slices 1_3,2_3, and
3_3 of pillar 3 to be included in payload 109, and slices 1_4,
2_4,and 3_4 ofpillar4 to be included in payload 111. Payload
scenario B represents a scenario where the DS processing unit
16 selects one slice of the corresponding pillar of the three
sets of encoded data slices per payload. For example, the DS
processing unit 16 selects slice 1_1 of pillar 1 to be included
in payload 105, slice 1_2 of pillar 2 to be included in payload
107, slice 1_3 of pillar 3 to be included in payload 109, and
slice 1_4 of pillar 4 to be included in payload 111.

Payload scenario C represents a scenario where the DS
processing unit 16 selects all encoded data slices of the three
sets of encoded data slices for all payloads 105-111. For
example, the DSN interface 32 selects slices 1_1,1_2,1_3,
1.4,2.1,2 2,2 3,2 4,3 1,3 2,3 3, and3_4tobeincluded
in each payload of payloads 105-111. Payload scenario D
represents a scenario where the DS processing unit 16 selects
one of encoded data slices of the three sets of encoded data
slices for all payloads 105-111. For example, the DSN inter-
face 32 selects slices1_1,1_2,1_3,and 1_4 to be included in
each payload of payloads 105-111.

Payload scenario E represents a scenario where the DS
processing unit 16 encodes a secret (e.g., a private key) to
produce a plurality of secret shares for distributed storage in
a plurality of DS units. In such a scenario, the DS processing
unit 16 encodes the secret utilizing a secret encoding function
to produce the plurality of secret shares. The secret encoding
function includes a Shamir function and dispersed storage
error encoding. For example, the DS processing unit 16
encodes the secret utilizing the Shamir function to produce
four secret shares when a Shamir function width is four. The
DS processing unit 16 encrypts the plurality of secret shares
to produce a plurality of encrypted shares. The encrypting is

US 9,219,604 B2

15

in accordance with an encryption function, wherein the
encryption function is based on a plurality of secret expo-
nents. For example, the DS processing unit 16 encrypts the
four secret shares utilizing the encryption function to produce
encrypted shares 1-4, wherein a different secret exponent is
utilized by the encryption function to encrypt each of the four
secret shares.

The DS processing unit 16 aggregates corresponding
encrypted shares and secret exponents for storage in each of
the plurality of DS units. For example, the DS processing unit
16 aggregates encrypted share 1 and secret exponent 1 as
payload 105, encrypted share 2 and secret exponent 2 as
payload 107, encrypted share 3 and secret exponent 3 as
payload 109, and encrypted share 4 and secret exponent 4 as
payload 111. Next, the DS processing unit 16 sends payload
105 to DS unit 1 for storage, sends payload 107 to DS unit 2
for storage, sends payload 109 to DS unit 3 for storage, and
sends payload 111 to DS unit 4 for storage. The method of
operation to store such encrypted shares and secret exponents
is discussed in greater detail with reference to FIGS. 11A-
11F.

FIG. 6D is a flowchart illustrating an example of generating
a protocol header of a dispersed storage network (DSN)
frame. The method begins at step 128 where a processing
module generates values for a protocol class field, a protocol
class version field, and an operation code (opcode) field based
on an operational function being communicated by the DSN
frame. The operational function includes at least one of the
key agreement operation, a registration operation, a read
operation, a check operation, a list range operation, a write
operation, a checked write operation, a commit operation, a
rollback operation, a finalize operation, an undo operation,
and a list digest operation.

The processing module generates a protocol class value for
the protocol class field by at least one of: retrieving the pro-
tocol class value from a protocol class list based on the opera-
tional function, utilizing the protocol class value of a request
DSN frame (e.g., a DSN frame that includes a request mes-
sage) when the DSN frame is a response DSN frame (e.g., a
DSN frame that includes a response message), retrieving the
protocol class value from a support protocol class list, retriev-
ing the protocol class value from a unit-module type protocol
class list, and extracting the protocol class value from a nego-
tiation result. For example, the processing module generates
a protocol class value of 01 when the protocol class value of
a corresponding read request DSN frame has value of 01 and
the operational function is a read response.

The method continues at step 130 where the processing
module generates a protocol class version field. The process-
ing module generates a protocol class version value for the
protocol class version field by at least one of utilizing a most
recent protocol class version value, retrieving the protocol
class version value from a protocol class version list based on
the operational function, utilizing the protocol class version
value of a request DSN frame when the DSN frame is a
response DSN frame, retrieving the protocol class version
value from a support protocol class version list, retrieving the
protocol class version value from a unit-module protocol
class version list, and extracting the protocol class version
value from a negotiation result. For example, the processing
module generates a protocol class version value of 03 based
on retrieving the most recent protocol class version value
from the support protocol class version list. As another
example, processing module initiates a negotiation sequence
when a protocol class error message is received (e.g., indicat-
ing that a present protocol class value and/or a present proto-
col class version value is unacceptable). The negotiation

30

40

45

55

16

sequence includes one or more of generating a supported
protocol class message, outputting the supported protocol
class message, receiving a message that includes a supported
protocol class list indicating supported protocol classes and/
or protocol class versions, selecting at least one of a supported
protocol class value and a protocol class version value from
the supported protocol class list, and utilizing the at least one
of the supported protocol class value and the supported pro-
tocol class version value.

The method continues at step 132 where the processing
module generates an operation code field that includes an
opcode value based on one or more of an operational function
being communicated by the DSN frame, an opcode list, and a
predetermination. For example, the processing module gen-
erates the operation code field to include an opcode value of
40 hex when the operational function being communicated by
the DSN frame is a read request operation, the protocol class
field value is 01, and the protocol class version field value is
03.

The method continues at step 134 where the processing
module generates a request/response field to indicate a
request message for a request message DSN frame or a
response message for a response message DSN frame. For
example, processing module generates the request/response
field to include a value of zero when the DSN frame is the
request message DSN frame. As another example, the pro-
cessing module generates the request/response field to
include a value of 1 when the DSN frame is the response
message DSN frame.

The method continues at step 136 where the processing
module generates a request number field that includes a
request number value by at least one of transforming a ran-
dom number generator output to produce the value, trans-
forming a variable reference number to produce the value
(e.g., a hash or block cipher encryption of the variable refer-
ence number which increments by one for each new request
number value), adding an increment to a previous request
number value to produce the value, selecting a predetermined
number to produce the value, and utilizing a request number
value of a request DSN frame when the DSN frame is a
response DSN frame. For example, the processing module
generates a request number value of 39,239 in a four byte
wide request number field based on the random number gen-
erator output. As another example, the processing module
generates a request number value of 9,093 when the previous
request number value is 9,083 and the increment is 10. As yet
another example, the processing module generates a request
number value of 277 when the request number value of the
request DSN frame is 277 and the DSN frame is a response
DSN frame.

The method continues at step 138 where the processing
module arranges, in order, values for the protocol class field,
the protocol class version field, the opcode field, the request/
response field, the request number field, and a payload length
field to produce the protocol header. The method continues at
step 140 where the processing module determines whether
the DSN frame is to have a payload based on one or more
values of one or more of the fields of the protocol header. For
example, the processing module determines that the DSN
frame is not to have the payload when the opcode value
indicates a write commit response operation. As another
example, the processing module determines that the DSN
frame is to have the payload when the opcode value indicates
a read request operation. The method branches to step 150
when the processing module determines that the DSN frame

US 9,219,604 B2

17

is not to have the payload. The method continues to step 142
when the processing module determines that the DSN frame
is to have the payload.

The method continues at step 142 where processing mod-
ule determines the payload as one of a request payload for a
request message DSN frame and a response payload for a
response message DSN frame. The determination may be
based on one or more of the operational function, the values
for the protocol class field, the protocol class version field, the
request/response field, and the opcode field.

The method continues at step 144 where the processing
module sums a number of bytes of the payload to produce a
value for the payload length field. Alternatively, the process-
ing module determines the value utilizing one or more of a
payload length formula and a fixed value. The determination
may be based on one or more of the operational function, the
values for the protocol class field, the protocol class version
field, the request/response field, and the opcode field. For
example, the processing module determines to utilize a pay-
load length formula of 8T to produce the value as a four byte
payload length field, where T is the number of transaction
numbers, when the operational function is a write commit
request operation. As another example, the processing mod-
ule determines to utilize a fixed value of zero when the opera-
tional function is an undo write response operation. As yet
another example, the processing module determines to sum
number of bytes of the payload to produce the value as a four
byte payload length field when the operational function is a
checked write request operation.

The method continues at step 146 where the processing
module appends the payload to the protocol header to pro-
duce the DSN frame. The method continues at step 148 where
the processing module outputs the DSN frame. For example,
the processing module sends a request message DSN frame to
one or more DS unit for a write request operation. As another
example, the processing module sends a response message
DSN to a requesting device that initiated a write request.

The method continues at step 150 where the processing
module establishes a value for the payload length field as a
predetermined value. For example, processing module estab-
lishes the value as zero for the payload field when the DSN
frame is not to have a payload. The method continues at step
152 where the processing module establishes the protocol
header as the DSN frame. The method continues at step 148
where the processing module outputs the DSN frame.

FIG. 7A is a diagram illustrating an example of a key
agreement request message format as a request dispersed
storage network (DSN) frame that includes a protocol header
112 and a payload 156. The protocol header 112 includes one
or more of a protocol class field 116, a protocol class version
field 118, an operation code field 120, arequest/response field
122, a request number field 124, and a payload length field
126. For example, the protocol class field 116 includes a
protocol class value of 03 hex, the protocol class version field
118 includes a protocol class version value of 01 hex, the
operation code field 120 includes an operation code value of
10 hex, and the request/response field 122 includes a value of
zero when the request DSN frame is associated with a key
agreement request operational function.

The payload 156 includes an encryption parameters field
155, a primitive root parameter g field 157, a safe prime
parameter p field 158, and a client public key field 159. The
encryption parameters field 155 includes encryption param-
eter values (e.g., encryption algorithm indicators such as
advanced encryption standard AES-256-CBC) and may be
variable in length (e.g., any number bytes). The primitive root
parameter g field 157 includes a primitive root g value of a

10

25

40

45

18

Diffie-Hellman function. The safe prime parameter p field
158 includes a safe prime parameter p value of a Diffie-
Hellman function. The client public key field 159 includes a
client public key value (e.g., of a public-private key pair
associated with a key agreement request sending entity). As
an implementation example, the primitive root parameter g
field 157, the safe prime parameter p field 158, and the client
public key field 159 are each four bytes in length.

FIG. 7B is a flowchart illustrating an example of generating
a key agreement request message for a request dispersed
storage network (DSN) frame to support a key agreement
request operation. The method begins at step 160 where a
processing module generates values for fields of a protocol
header. The generating includes similar steps to steps 128-
130 of FIG. 6D where the processing module generates a
protocol class value for a protocol class field and generates a
protocol class version value for a protocol class version field.
The generation of the fields of the protocol header includes
generating the protocol class field to indicate a protocol class
for the key agreement request operation and generating the
protocol class version field to indicate a protocol class version
for the key agreement request operation.

The method continues at step 162, which includes similar
steps to steps 132-134 of FIG. 6D, where the processing
module generates an operation code field to indicate a key
agreement request operation (e.g., an operation code value of
10 hex) and generates a request/response value of zero for a
request/response field. The method continues at step 136 of
FIG. 6D where the processing module determines a request
number value for a request number field.

The method continues at step 166 where the processing
module generates encryption parameters of a payload section
of the key agreement request DSN frame. The generating
includes one or more of determining new encryption param-
eters associated with the key agreement request, obtaining the
encryption parameters from one or more of a lookup, a query,
a local memory retrieval, a DSN access, and a message.

The method continues at step 168 where the processing
module generates a primitive root parameter g value. The
generating includes one or more of determining the primitive
root parameter g value associated with the key agreement
request based on a Diffie-Hellman function, obtaining the
primitive root parameter g value from one or more of a
lookup, a query, a local memory retrieval, a DSN access, and
a message.

The method continues at step 169 where the processing
module generates a safe prime premature p value. The gen-
erating includes one or more of determining the safe prime
premature p value associated with the key agreement request
based on the Diffie-Hellman function, obtaining the safe
prime premature p value from one or more of a lookup, a
query, alocal memory retrieval, a DSN access, and a message.

The method continues at step 170 where the processing
module generates a client public key value. The generating
includes one or more of generating the client public key value
as a public key of a public-private key pair, obtaining the
public key value from one or more of'a lookup, a query, alocal
memory retrieval, a DSN access, and a message.

The method continues at step 171 where the processing
module generates a payload length field of the protocol
header to include a payload length that represents a length of
the payload section. The generating of the payload length
includes determining a length of each field of the payload
section. For example, the generating includes determining a
length of an encryption parameters field, determining a length
of a primitive root parameter g field, determining a length of
a safe prime parameter p field, and determining a length of a

US 9,219,604 B2

19

client public key field. For example, the processing adds 12
(e.g., four bytes for each of the primitive root parameter g
field, the safe prime parameter p field, and the client public
key field) to a byte count of the encryption parameters value
of the encryption parameters field to produce the payload
length.

The method continues at step 172 where the processing
module populates the protocol header and the payload section
in accordance with a key agreement request message format
to produce the key agreement request message. The method
continues at step 174 where the processing module outputs
the request DSN frame in order of the protocol header, the
encryption parameters field, the primitive root parameter g
field, the safe prime parameter p field, and the client public
key field. Alternatively, or in addition to, the processing mod-
ule generates a plurality of DSN frames regarding the key
agreement request operation, wherein the plurality of DSN
frames includes the request DSN frame.

FIG. 8A is a diagram illustrating an example of a key
agreement response message 176 response dispersed storage
network (DSN) frame that includes a protocol header 112 and
a payload 178. The a protocol header 112 includes one or
more of a protocol class field 116, a protocol class version
field 118, an operation code field 120, arequest/response field
122, a request number field 124, and a payload length field
126. For example, the protocol class field 116 includes a
protocol class value of 03 hex, the protocol class version field
118 includes a protocol class version value of 01 hex, the
operation code field 120 includes an operation code value of
10 hex, and the request/response field 122 includes a value of
one when the response DSN frame is associated with a key
agreement response operational function.

The payload 178 includes a session key identifier (ID) field
180, a server public key field 182, a certificate chain field 184,
a signature algorithm field 186, and a signature ficld 188. The
session key identifier (ID) field 180 includes a session key ID
value, wherein the session key ID value is unique among other
session key IDs generated by a key agreement response send-
ing entity in response to receiving a key agreement request.
The server public key field 182 includes a server public key
value associated with the key agreement response sending
entity. The certificate chain field 184 includes a certificate
chain field value (e.g., one or more certificates corresponding
to one or more certificate authorities in a chain from the key
agreement response sending entity to a root certificate author-
ity). The signature algorithm field 186 includes a signature
algorithm value utilized to generate the signature. For
example, the signature algorithm value may indicate secure
hash algorithm 1 (SHA1) with Rivest Shamir Adleman
(RSA). As another example, the signature algorithm value
may indicate SHA1 with digital signature algorithm (DSA).

The signature field 188 includes a signature value gener-
ated, in accordance with the signature algorithm value, over
the payload 178 and a payload of a corresponding key agree-
ment request message. For example, such a signature value
may be generated in accordance with distinguished encoding
rules (DER) encoding of an abstract syntax notation 1
(ASN.1). In an implementation example, the session key
identifier (ID) field 180 and the server public key field 182 are
each four bytes in length and the certificate chain field 184,
the signature algorithm field 186, and the signature field 188
include a variable number of bytes.

FIG. 8B is a flowchart illustrating an example of generating
a key agreement response message for a response dispersed
storage network (DSN) frame to support a key agreement
response operation, which includes similar steps to FIGS. 6D
and 7B. The method begins with step 160 of F1G. 7B where a

10

15

20

25

30

35

40

45

50

55

60

65

20

processing module generates fields of a protocol header to
include values of the fields of the protocol header. For
example, generation of the fields of the protocol header
includes generating the protocol class field to indicate a pro-
tocol class for a key agreement response operation and gen-
erating the protocol class version field to indicate a protocol
class version for the key agreement response operation.

The method continues at step 190, which include similar
steps to steps 132-134 of FIG. 6D, where the processing
module generates an operation code field to indicate a key
agreement response operation (e.g., an operation code value
of 10 hex) and generates a request/response value of 1 for a
request/response field. The method continues with step 136 of
FIG. 6D where the processing module determines a request
number value for a request number field by utilizing a request
number value of a corresponding request DSN frame when
the response DSN frame is in response to the corresponding
request DSN frame.

The method continues at step 192 where the processing
module generates a session key identifier (ID) of a payload
section of the response DSN. The generating includes gener-
ating the session key ID such that the session key ID is unique
among other previously generated session key IDs by a key
agreement response sending entity (e.g., a server).

The method continues at step 194 where the processing
module generates a server public key value. The generating
includes one or more of generating the server public key value
as a public key of a public-private key pair, obtaining the
server public key value from one or more of'a lookup, a query,
a local memory retrieval, a DSN access, and a message.

The method continues at step 196 where the processing
module generates a certificate chain value. The generating
includes one or more of generating the certificate chain value
based on sending at least one certificate signing request and
receiving at least one signed certificate in response, and
obtaining the certificate chain value based on one or more of
alookup, a query, a local memory retrieval, a DSNaccess, and
a message. The generating includes ordering one or more
certificates such that a certificate associated with the key
agreement response sending entity (e.g., the server) is first,
followed by each successive certificate from an issuer of a
previous certificate.

The method continues at step 198 where the processing
module generates a signature algorithm value. The generating
includes obtaining the signature algorithm value based on one
or more of a lookup, a query, a local memory retrieval, a DSN
access, and a message. The method continues at step 200
where the processing module generates a signature value. The
generating of the signature value includes utilizing a signa-
ture algorithm associated with the signature algorithm value
to form a signature over the payload section of the key agree-
ment response DSN frame and a payload of a corresponding
key agreement request DSN frame.

The method continues with step 171 of FIG. 7B where the
processing module generates a payload length field of the
protocol header to include a payload length that represents a
length of the payload section. The method continues at step
202 where the processing module populates the protocol
header and the payload to produce the key agreement
response message. The method continues at step 204 where
the processing module outputs the key agreement response
DSN frame in order of the protocol header, the session key ID
field, the server public key field, the certificate chain field, the
signature algorithm field, and the signature field.

FIG. 9A is a diagram illustrating an example of a register
request message 206 request dispersed storage network
(DSN) frame that includes a protocol header 112 and a pay-

US 9,219,604 B2

21

load 208. The protocol header 112 includes one or more of a
protocol class field 116, a protocol class version field 118, an
operation code field 120, a request/response field 122, a
request number field 124, and a payload length field 126. For
example, the protocol class field 116 includes a protocol class
value of 03 hex, the protocol class version field 118 includes
a protocol class version value of 01 hex, the operation code
field 120 includes an operation code value of 20 hex, and the
request/response field 122 includes a value of zero when the
request DSN frame is associated with a register request opera-
tional function.

The payload 208 includes a session key identifier (ID) field
180, an encrypted parameter package field 210, a signature
algorithm field 212, and a signature field 214. The session key
identifier (ID) field 180 includes a session key ID value,
wherein the session key ID value is extracted from a previ-
ously received key agreement response message. The
encrypted parameter package field 210 includes one or more
parameter values including at least one of an alias name, a
certificate chain, a share index, a decode threshold, a share
width, a share revision, an encrypted share, a secret exponent,
and a nonce. The alias name includes a string representation
of an alias for a key being stored and a certificate chain. The
string representation may include a format of
username@realm. The share index includes an index of a
share of the key being stored. The decode threshold includes
a number of shares required to reconstruct the share being
stored. The share width includes a number of shares. The
share revision includes a unique revision ID associated with a
corresponding share. The encrypted share includes an
encrypted secret share of the key being stored. The encryption
includes encryption utilizing a strong key generated based on
a user password and a secret exponent. The secret exponent
includes a randomly chosen number between one and a hard-
coded Sophie-Germain prime q. The nonce includes a hash
(e.g., SHA-512) of a mutual secret appended with a constant
(e.g., character “N”). The nonce may be utilized to prevent
replay attacks as well as validating property coding.

The signature algorithm field 212 includes a signature
algorithm value utilized to generate a signature value of the
signature field. The signature field 214 includes a signature
value generated, in accordance with the signature algorithm
value, over the payload 208.

FIG. 9B is a flowchart illustrating an example of generating
a register request message as a request dispersed storage
network (DSN) frame to support a register request operation.
The method begins at step 216 where a processing module
generates values for fields of a protocol header to include one
or more steps of steps 128-130 of FIG. 6D where the process-
ing module generates a protocol class value for a protocol
class field and generates a protocol class version value for a
protocol class version field. The generating of the fields of the
protocol header includes generating the protocol class field to
indicate a protocol class for the register request operation and
generating the protocol class version field to indicate a pro-
tocol class version for the register request operation.

The method continues at step 218 which includes one or
more steps of steps 132-134 of FIG. 6D, where the processing
module generates an operation code field to indicate a register
request operation (e.g., an operation code value of 20 hex) and
generates a request/response value of zero for a request/re-
sponse field. The method continues with step 136 of FIG. 6D
where the processing module determines a request number
value for a request number field.

The method continues at step 220 where the processing
module generates a session key identifier (ID) value of a
payload section of the register request DSN frame. The gen-

10

15

20

25

30

35

40

45

50

55

60

65

22

erating includes obtaining the session key ID value from one
or more of a lookup, a query, a local memory retrieval, a DSN
access, and a message. For example, the processing module
extracts the session key 1D value from a previously received
key agreement response message.

The method continues at step 222 where the processing
module generates an encrypted parameter package to include
one or more encrypted parameter package values. The gen-
erating may be based on one or more of determining at least
one of the one or more encrypted parameter package values
and obtaining at least one of the one or more encrypted
parameter package values based on one or more of a lookup,
a query, a local memory retrieval, a DSN access, and a mes-
sage. For example, the processing module generates an
encrypted share and a secret exponent as encrypted parameter
package values and retrieves a share width encrypted param-
eter package value from local memory.

The method continues at step 224 where the processing
module generates a signature algorithm value. The generating
includes obtaining the signature algorithm value based on one
or more of a lookup, a query, a local memory retrieval, a DSN
access, and a message. The method continues at step 226
where the processing module generates a signature value. The
generating of the signature value includes utilizing a signa-
ture algorithm associated with the signature algorithm value
to form a signature over the payload section of the register
request message.

The method continues with step 171 of FIG. 7B where the
processing module generates a payload length field of the
protocol header to include a payload length that represents a
length of the payload section. The method continues at step
228 where the processing module populates the protocol
header and the payload to produce the register request mes-
sage. The method continues at step 230 where the processing
module outputs the register request DSN frame in order of the
protocol header, the session key ID field, the encrypted
parameter package field, the signature algorithm field, and the
signature field.

FIG. 10A is a diagram illustrating an example of a register
response message 232 of a register response dispersed stor-
age network (DSN) frame that includes a protocol header
112. The protocol header 112 includes one or more of a
protocol class field 116, a protocol class version field 118, an
operation code field 120, a request/response field 122, a
request number field 124, and a payload length field 126. For
example, the protocol class field 116 includes a protocol class
value of 03 hex, the protocol class version field 118 includes
a protocol class version value of 01 hex, the operation code
field 120 includes an operation code value of 20 hex, the
request/response field 122 includes a value of one, and the
payload length field includes a value of zero when the
response DSN frame is associated with a register response
operational function. The register response DSN frame may
be sent by a register response sending entity (e.g., a server)
when a registration sequence is successful.

FIG. 10B is a flowchart illustrating an example of gener-
ating a register response message of a response dispersed
storage network (DSN) frame to support a register response
operation. The method may be executed by a processing
module (e.g., of a server) when the processing module deter-
mines that a registration sequence is successful. The determi-
nation may be based on one or more of verifying that a register
request is associated with an authenticated user, verifying an
associated certificate chain, verifying that a session key iden-
tifier (ID) is associated with a key agreement response, veri-
fying that an associated alias name is not already in use,
validating a signature, validating that an associated secret

US 9,219,604 B2

23

exponent is within a valid range, and validating that an asso-
ciated encrypted share is within a valid range.

The method to generate the register response message
begins at step 216 of FIG. 9B where the processing module
generates values for fields of a protocol header. The genera-
tion of the fields of the protocol header includes generating a
protocol class field to indicate a protocol class for the register
response operation and generating a protocol class version
field to indicate a protocol class version for the register
response operation.

The method continues at step 234 where the processing
module generates an operation code field to indicate a register
request operation (e.g., an operation code value of 20 hex) and
generates a request/response value of one for a request/re-
sponse field. The method continues with step 136 of FIG. 6D
where the processing module determines a request number
value for a request number field. For example, the processing
module determines the request number value to be a request
number value of a corresponding received register request
message.

The method continues with step 171 of FIG. 7B where the
processing module generates a payload length field of the
protocol header to include a payload length of zero (e.g., no
payload section). The method continues at step 236 where the
processing module populates the protocol header to produce
the register response message. The method continues at step
238 where the processing module outputs the register
response DSN frame that includes the protocol header.

FIG. 11A is a schematic block diagram of another embodi-
ment of a computing system that includes a computing device
250 and one or more dispersed storage (DS) units 36. The
computing device 250 may be implemented as at least one of
auser device, a DS processing unit, a DS unit, a DS managing
unit, and any other computing device operable to couple with
the one or more DS units 36. Each DS unit 36 of the one or
more DS units may be implemented as at least one of a server,
a storage device, a user device, a DS processing unit, a DS
unit, a DS managing unit, and any other computing device.
The computing device 250 includes a DS module 252. The
DS module 252 includes a generate shared secret key module
254, an encrypt message module 256, an output encrypted
message module 258, and a generate public key module 260.

The generate shared secret key module 254, when operable
within the computing device 250, causes the computing
device 250 to generate a shared secret key 262 from a public
key 264 of another entity (e.g., a DS unit 36) and a private key
268 using a first modulo prime polynomial function, wherein
a public key 266 is generated from the private key 268 using
a second modulo prime polynomial function and wherein the
public key 264 of the other entity is derived using the second
modulo prime polynomial function on a private key of the
other entity. The generate shared secret module 254 functions
to generate the shared secretkey by obtaining a prime “p” and
generating the shared secret key 262 as a modulo “p” of the
public key 264 of the other entity raised to a power of the
private key 268. The generating may further include truncat-
ing the result of the second modulo prime polynomial func-
tion such that the shared secret key 262 includes a desired
number of bits.

The generate shared secret module 254 further functions to
generate the shared secret key 262 by obtaining the prime “p”,
obtaining a constant “K” (e.g., retrieved, an alpha character
K, generated and shared with the other entity for a session),
generating a shared secret as a modulo “p” of the public key
264 of'the other entity raised to a power of the private key 268
(e.g., shared secret=other entity public key (264) " private key
(268) modulo p), and generating the shared secret key 262

10

20

40

45

50

55

24

based on the constant K and the shared secret. For example, a
hashing function is utilized to generate a hash digest of the
shared secret and an exclusive OR function is performed on
the hash digest and the constant K such that the shared secret
key 262 includes the desired number of bits. The shared secret
key 262 may include two or more shared secret keys based on
the shared secret by generating each of the two more shared
secret keys based on the shared secret and a unique constant
associated with each of the shared secret keys. For example,
the hashing function is utilized to generate the hash digest of
the shared secret and an exclusive OR function is performed
on the hash digest and the constant T to produce a second
shared secret key that includes the desired number of bits. The
two or more shared secret keys may be utilized within the
computing system to send confidential information from one
entity to another. For example, a first shared secret key may be
utilized to send confidential information from the computing
device 250 to the DS unit 36. As another example, a second
shared secret key may be utilized to send confidential permis-
sion from the DS unit 36 to the computing device 250. In such
examples, the constants may be predetermined and known in
advance by both entities.

The generate shared secret key module 254 further func-
tions to generate the shared secret key 262 by outputting a key
agreement request 270 to the other entity, wherein the key
agreement request 270 includes a primitive root polynomial
“g”, the prime “p”, and the public key 266 (e.g., public key of
the DS module) and receiving a key agreement response 272
from the other entity, wherein the key agreement response
includes the public key 264 of the other entity and authenti-
cation information. The outputting includes generating the
key agreement request 270, wherein generating the key agree-
ment request 270 includes generating the key agreement
request 270 to include a header section and a payload section,
wherein the payload section includes encryption parameters
(e.g., an encryption algorithm such as AES-256-CBC, the
primitive root polynomial “g”, the prime “p”, and the public
key 266). The authentication information includes one or
more of a certificate chain, a signature algorithm, and a sig-
nature.

The encrypt message module 256, when operable within
the computing device 250, causes the computing device 250
to encrypt a message 274 using the shared secret key to
produce an encrypted message 276. The encrypt message
module 256 functions to encrypt the message 274 by encod-
ing the data 273 in accordance with an encoding function to
produce a set of encoded shares. The data 273 includes one or
more of an encryption key, a credential, access information, a
document, a file, an identifier, address information, and con-
fidential information. For each encoded share of at least a
write threshold number of encoded shares of the set of
encoded shares (e.g., greater than or equal to a decode thresh-
old number with regards to the encoding function), the
encrypt message module 256 further functions to generate an
encryption key based on a random number affiliated with the
other entity (e.g., sent to the other entity as a secret exponent)
and a prime “p”, encrypt the encoded share utilizing the
encryption key to produce an encrypted share, and generate
the message 274 as a parameter package that includes the
encrypted share and the secret exponent.

The encoding function includes at least one of a Shamir
function and dispersed storage error encoding function. The
generating of the encryption key includes generating the
secret exponent (e.g., a random number generated and shared
with the other entity) and generating the encryption key based
on a password 278 (e.g., input from a user, retrieved) and the
secret exponent. For example, the encryptionkey is generated

US 9,219,604 B2

25

by transforming the password 278 utilizing a mask generating
function (MGF) in accordance with a formula of: encryption
key=((MGF (password))*)** modulo p; where ex is the secret
exponent and p may be prime p. The parameter package may
also include a nonce (e.g., hash of shared secret XOR with a
constant N), a share revision, a share width, a decode thresh-
old, a share index, a certificate chain, and an alias name for the
message.

The output encrypted message module 258, when operable
within the computing device 250, causes the computing
device 250 to output the encrypted message 276 to the other
entity. The outputting the encrypted message 276 to the other
entity includes generating a register request 280, wherein
generating the register request 280 includes one or more of
obtaining (e.g., generate, retrieve, receive) a certificate chain,
(e.g., chain to a certificate authority), obtaining (e.g., retrieve,
receive) a signature algorithm (e.g., a signature algorithm
type), generating a signature, (e.g., over other portions of a
payload section of the register request), and generating the
register request 280 to include a header section and a payload
section, wherein the payload section includes a session key
identifier (e.g., from the key agreement response 272), the
encrypted message 276, the certificate chain, the signature
algorithm, and the signature.

The generate public key module 260, when operable within
the computing device 250, causes the computing device 250
to generate the public key 266 by generating a primitive root
polynomial “g”, generating a prime “p”, and generating the
public key as a modulo “p” of “g” raised to a power of the
private key 268. The primitive root polynomial g and the
prime p are related such that every number “a” between 1 and
(p-1), there is some integer exponent (e) such that g"e mod
p=a. For example, public key (266)=g" private key (268)
modulo p, wherein the private key 268 is generated as a
random number.

FIG. 11B is a flowchart illustrating an example of encrypt-
ing a message. The method begins at step 282 where a pro-
cessing module (e.g., of a distributed storage (DS) module, a
user device, a DS processing unit) obtains a private key. The
obtaining includes at least one of retrieving the private key,
generating the private key based on a random number, and
receiving the private key. Such a private key may be associ-
ated with the DS module. The method continues at step 284
where the processing module generates a public key based on
the private key, wherein the public key is generated from the
private key using a second modulo prime polynomial func-
tion. The generating the public key includes generating a
primitive root polynomial “g”, generating a prime “p”, and
generating the public key as a modulo “p” of “g” raised to a
power of the private key (e.g., public key=g " private key
modulo p). The primitive root polynomial g and the prime p
are related such that every number “a” between 1 and (p-1),
there is some integer exponent (e) such that g"e mod p=a.

The method continues at step 286 where the processing
module outputs a key agreement request to another entity
(e.g., a DS unit, an authentication server, a storage server),
wherein the key agreement request includes the primitive root
polynomial “g”, the prime “p”, and the public key. The out-
putting includes generating the key agreement request,
wherein generating the key agreement request includes gen-
erating the key agreement request to include a header section
and a payload section, wherein the payload section includes
encryption parameters (e.g., an encryption algorithm such as
AES-256-CBC), the primitive root polynomial “g”, the prime
“p”, and the public key.

The method continues at step 288 where the processing
module receives a key agreement response from the other

10

15

20

25

30

35

40

45

50

55

60

65

26

entity, wherein the key agreement response includes a public
key of the other entity and authentication information. The
authentication information includes one or more of a certifi-
cate chain, a signature algorithm, and a signature over the
response. The method continues at step 290 where the pro-
cessing module generates a shared secret key from the public
key of another entity and the private key using a first modulo
prime polynomial function, wherein the public key of the
other entity is derived using the second modulo prime poly-
nomial function on a private key of the other entity.

The generating the shared secret key includes obtaining the
prime “p” and generating the shared secret key as a modulo
“p” of the public key of the other entity raised to apower of the
private key (e.g., shared secret key=(public key of the other
entity) " private key modulo p). The generating may further
include truncating the result of the second modulo prime
polynomial function such that the shared secret key includes
adesired number of bits. The generating the shared secret key
further includes obtaining the prime “p”, obtaining a constant
“K” (e.g., retrieved, generated and shared with the other
entity), generating a shared secret as a modulo “p” of the
public key of the other entity raised to a power of the private
key, and generating the shared secret key based on the con-
stant K and the shared secret. For example, a hashing function
is utilized to generate a hash digest of the shared secret and an
exclusive OR function is performed on the hash digest and the
constant K such that the shared secret key includes the desired
number of bits.

The method continues at step 292 where the processing
module encodes data in accordance with an encoding func-
tion (e.g., Shamir function or dispersed storage error encod-
ing function) to produce a set of encoded shares. The data
includes one or more of an encryption key, a credential,
access information, a document, a file, an identifier, address
information, and confidential information.

For an encoded share of the set of encoded shares, the
method continues at step 294 where the processing module
generates a message. The generating the message includes
generating an encryption key based on a random number
affiliated with the other entity (e.g., the secret exponent gen-
erated based on a random number and shared with the other
entity) and the prime “p”, encrypting the encoded share uti-
lizing the encryption key to produce an encrypted share, and
generating the message as a parameter package that includes
the encrypted share and a secret exponent. The generating of
the encryption key includes generating the secret exponent
(e.g., based on a random number) and generating the encryp-
tion key based on a password (e.g., input from a user,
retrieved) and the secret exponent. For example, the encryp-
tion key is generated by transforming the password utilizing
a mask generating function (MGF) in accordance with a
formula of: encryption key=((MGF(password))*)** modulo
p; where ex is the secret exponent and p may or may not be
prime p (e.g., a different unique value of p). The parameter
package may also include a nonce (e.g., hash of shared secret
XOR with a constant N), a share revision, a share width, a
decode threshold, a share index, a certificate chain, and an
alias name for the message.

The method continues at step 296 where the processing
module encrypts the message using the shared secret key to
produce an encrypted message. The method continues at step
298 where the processing module outputs the encrypted mes-
sage to the other entity. The outputting the encrypted message
to the other entity includes generating a register request,
wherein generating the register request includes one or more
of obtaining (e.g., generate, retrieve, receive) a certificate
chain, (e.g., chain to a certificate authority), obtaining (e.g.,

US 9,219,604 B2

27

retrieve, receive) a signature algorithm (e.g., a signature algo-
rithm type), generating a signature, (e.g., over other portions
of a payload section of the register request), and generating
the register request to include a header section and a payload
section, wherein the payload section includes a session key
identifier (e.g., from an associated key agreement response),
the encrypted message, the certificate chain, the signature
algorithm, and the signature.

FIG. 11C is a schematic block diagram of another embodi-
ment of a computing system that includes a computing device
300 and a client 302. The client 302 may be implemented as
at least one of a user device, a DS processing unit, a DS unit,
a DS managing unit, and any other computing device oper-
able to couple with the computing device 300. The computing
device 300 may be implemented as at least one of a server, a
storage device, an authentication server, a user device, a DS
processing unit, a DS unit, a DS managing unit, and any other
computing device. The computing device 300 includes a DS
module 304. The DS module 304 includes a receive encrypted
message module 306, a generate shared secret key module
308, a decrypt encrypted message module 310, a generate
public key module 312, and a verify message module 314.

The receive encrypted message module 306, when oper-
able within a computing device 300, causes the computing
device 300 to receive an encrypted message 276 from another
entity (e.g., the client 302). The receive encrypted message
module 306 may receive a register request 280 from the client
302 that includes the encrypted message 276 and a signature
over at least a portion of the register request 280.

The generate shared secret key module 308, when operable
within the computing device 300, causes the computing
device 300 to generate a shared secret key 262 from a public
key 320 of the other entity and a private key 318 using a first
modulo prime polynomial function, wherein a public key 320
is generated from the private key 318 using a second modulo
prime polynomial function and wherein the public key 320 of
the other entity is derived using the second modulo prime
polynomial function on a private key of the other entity. The
private key 318 may be obtained by at least one of retrieving
the private key 318, receiving the private key 318, and gen-
erating the private key 318 based on a random number. The
generate shared secret key module 308 functions to generate
the shared secret key by obtaining a prime “p” and generating
the shared secret key 262 as a modulo “p” of the public key
320 of'the other entity raised to a power of the private key 318
(e.g., shared secret key 262=public key (320) " private key
(318) modulo p). The generate shared secret key module 308
may obtain the prime p and the public key 320 of the other
entity by receiving a key agreement request 270 that includes
one or more of the prime p, the public key 316 of the other
entity, and a primitive root polynomial “g”.

The generate shared secret key module 308 further func-
tions to generate the shared secret key 262 by obtaining the
prime “p”, obtaining a constant “K” (e.g., retrieve, receive),
generating a shared secret as a modulo “p” of the public key
of the other entity raised to a power of the private key, and
generating the shared secret key 262 based on the constant K
and the shared secret. For example, a hashing function is
utilized to generate a hash digest of the shared secret and an
exclusive OR function is performed on the hash digest and the
constant K such that the shared secret key 262 includes a
desired number of bits.

The decrypt encrypted message module 310, when oper-
able within the computing device 300, causes the computing
device 300 to decrypt the encrypted message 276 using the
shared secret key 262 to recapture a message 274. The gen-
erate public key module 312, when operable within the com-

40

45

28

puting device 300, causes the computing device 300 to gen-
erate the public key 320 by obtaining the primitive root
polynomial “g”, obtaining the prime “p”, and generating the
public key 320 as a modulo “p” of “g” raised to a power of the
private key 318 (e.g., public key (320)=g " private key (318)
modulo p). The generate shared secret key module 308 further
functions to generate a key agreement response 272 and send
the key agreement response 272 to the other entity. The key
agreement response 272 includes the public key 320.

The verify message module 314, when operable within the
computing device 300, causes the computing device 300 to
verify the message 274 and when the message 274 is verified,
store at least a portion of the message. For example, the verify
message module 314 stores an encrypted share and a secret
exponent of the message 274. The verifying includes validat-
ing the signature over at least a portion of the register request
280. For example, the verify message module 314 indicates
that the message 274 is verified when a calculated hash of the
at least the portion of the register request 280 is substantially
the same as a decrypted signature utilizing the public key 320
of the other entity.

FIG. 11D is a flowchart illustrating an example of decrypt-
ing an encrypted message. The method begins at step 330
where a processing module (e.g., of a dispersed storage (DS)
module, a server) obtains a private key. The obtaining
includes at least one of retrieving the private key, generating
the private key based on a random number, and receiving the
private key. Such a private key may be associated with the DS
module. The method continues at step 332 where the process-
ing module receives a key agreement request from another
entity (e.g., a client). The key agreement request may include
one or more of a primitive root polynomial “g”, a prime
and a public key of the other entity.

The method continues at step 334 where the processing
module generates a public key based on the private key,
wherein the public key is generated from the private key using
a second modulo prime polynomial function. The generating
the public key includes obtaining the primitive root polyno-
mial “g”, obtaining the prime “p”, and generating the public
key as amodulo “p” of “g” raised to a power of the private key
(e.g., public key=g " private key modulo p). The obtaining the
primitive root polynomial g and the obtaining the prime p
includes extracting the primitive root polynomial g and the
obtaining the prime p from the key agreement request.

The method continues at step 336 where the processing
module outputs a key agreement response to the other entity.
The outputting includes generating the key agreement
response to include the public key and sending the key agree-
ment response to the other entity. The method continues at
step 338 where the processing module receives an encrypted
message from the other entity. The receiving may include
receiving a register request from the other entity, wherein the
register request includes at least one of the encrypted message
and a signature over at least a portion of the register request.

The method continues at step 340 where the processing
module generates a shared secret key from the public key of
the other entity and the private key using a first modulo prime
polynomial function, wherein the public key of the other
entity is derived using the second modulo prime polynomial
function on a private key of the other entity. The generating
the shared secret key includes obtaining the prime “p”, and
generating the shared secret key as a modulo “p” of the public
key of the other entity raised to a power of the private key
(e.g., shared secret key=(public key of the other entity)" pri-
vate key modulo p). The generating the shared secret key
further includes obtaining the prime “p”, obtaining a constant
“K” (e.g., received from the other entity, retrieved), generat-

[Tt}

P

US 9,219,604 B2

29

ing a shared secret as a modulo “p” of the public key of the
other entity raised to a power of the private key (e.g., shared
secret=(public key of the other entity)” private key modulo p),
and generating the shared secret key based on the constant K
and the shared secret. For example, a hashing function is
utilized to generate a hash digest of the shared secret and an
exclusive OR function is performed on the hash digest and the
constant K such that the shared secret key includes a desired
number of bits.

The method continues at step 342 where the processing
module decrypts the encrypted message using the shared
secret key to recapture a message. The method continues at
step 344 where the processing module verifies the message.
For example, the processing module indicates that the mes-
sage is verified when a calculated hash of the at least the
portion of the register request is substantially the same as a
decrypted signature (e.g., of the register request) utilizing the
public key of the other entity. When verified, the method
continues at step 346 where the processing module stores at
least a portion of the message. For example, the processing
module stores an encrypted share and a corresponding secret
exponent of the message.

FIG. 11E is a flowchart illustrating an example of storing a
key. The method begins at step 350 where a processing mod-
ule (e.g., of a dispersed storage (DS) processing module, a
client) receives a set key request from a requester (e.g., from
a user device). The set key request may be utilized by the
requester to store a key. The set key request may include an
alias name, a password, the key, and a certificate authority
chain. The method continues at step 352 where the processing
module generates a key agreement request message for each
server of a set of servers (e.g., a set of dispersed storage (DS)
units). The key agreement request message includes encryp-
tion parameters, a primitive root g, a safe prime p, and a client
public key. The processing module generates the client public
key based on a client private key and in accordance with client
public key=ge" £rivae k& modulo p. The method continues
at step 354 where the processing module sends a correspond-
ing key agreement request message to each server of the setof
servers. The method continues at step 356 where the process-
ing module receives a set of key agreement response mes-
sages from the set of servers.

The method continues at step 358 where the processing
module determines a shared secret for each server basedon a
server public key and in accordance with an expression of:
shared secret=server public key<"*"#"*** ¥ modulo p. The
method continues at step 360 where the processing module
determines a session key for each server in accordance with
an expression of: session key=hash of (shared secret exclu-
sive OR “K”). For example, the processing module generates
each session key utilizing a most significant 256 bits of a hash
result when utilizing a SHAS512 hash function.

The method continues at step 362 where the processing
module generates a set of secret exponents, wherein each
secret exponent of the set of secret exponents corresponds to
a server. The generating includes generating the secret expo-
nent as a random number. The method continues at step 364
where the processing module generates a set of encrypted
shares. The generating includes applying a share encoding
function to the key to produce a set of encoded shares, gen-
erating a set of strong keys utilizing a masked generating
function (MGF) in accordance with an expression: strong key
x=((MGF(password))*)°, modulo p (e is a corresponding
secret exponent, X is a share number, password is retrieved or
received), encrypting each encoded share of the set of
encoded shares utilizing a corresponding strong key of the set
of strong keys to produce the set of encrypted shares. The

10

15

20

25

30

35

40

45

50

55

60

30

MGTF produces a deterministic pattern of bits of any desired
length based on an input. For example, the processing module
generates strong key 1=(MGF (password))?)°, modulo p. For
instance, the processing module generates strong key 1=13
when MGF(password)=4, e,=10, and p=23, as (4%)'° mod
23=13. Alternatively, or in addition to, the processing module
may further process the key to provide a key of a desired
length in relation to an encryption algorithm. For example,
the key output of the algorithm is hashed to produce a hashed
key and a desired number of bits (e.g., 256, 192, 128 bits) of
the hashed key are utilized as a key for the encryption algo-
rithm.

The method continues at step 366 where the processing
module generates a set of parameter packages, wherein each
parameter package of the set of parameter packages corre-
sponds to a server of the set of servers. The parameter package
includes a corresponding encrypted share of the set of
encrypted shares and a corresponding secret exponent of a set
of'secret exponents utilized to generate the set of strong keys.
The method continues at step 368 where the processing mod-
ule encrypts each parameter package of the set of parameter
packages utilizing a corresponding session key of the set of
session keys. The method continues at step 370 where the
processing module generates a set of register request mes-
sages, wherein each register request message includes an
associated session key 1D, encrypted parameter package, sig-
nature algorithm, and signature. The method continues at step
372 where the processing module outputs the set of register
request messages to the set of servers.

FIG. 11F is a flowchart illustrating an example of storing an
encrypted key share. The method begins at step 374 where a
processing module (e.g., of a server, of a dispersed storage
(DS) unit) receives a key agreement request message from a
requesting entity (e.g., a DS processing unit, a DS processing
module, a user device, a client). The method continues at step
376 where the processing module generates a key agreement
response message. The key agreement response message
includes one or more of a session key identifier (ID), a server
public key generated by the processing module based on a
server private key and in accordance with server public
key=g*e™ve" £rivare kv madulo p, a server certificate chain, a
signature algorithm, and a signature (e.g. over the key agree-
ment request and/or the key agreement response). The
method continues at step 378 where the processing module
outputs the key agreement response message to the requesting
entity.

The method continues at step 380 where the processing
module determines a shared secret based on the server private
key and a client public key from the key agreement request
and in accordance with an expression: shared secret=client
public key*™e” £riva% k& moadulo p. The method continues
with step 382 where the processing module determines a
session key in accordance with an expression of: session
key=hash of (shared secret exclusive OR constant “K”). The
method continues with step 384 where the processing module
receives a register request message (e.g., from the requesting
entity). The method continues at step 386 where the process-
ing module verifies a signature of the register request message
(e.g., validating that a hash of the request is substantially the
same as a decrypted signature utilizing the client public key).

The method continues at step 388 where the processing
module decrypts, utilizing the session key, an encrypted
parameter package of the register request message to produce
aparameter package. The method continues at step 390 where
the processing module verifies a nonce of the parameter pack-
age. The verifying includes extracting the nonce from the
parameter package, generating a hash of the shared secret

US 9,219,604 B2

31

plus a constant (e.g., character “N”) to produce a hash value,
and comparing the nonce to the hash value.

The processing module indicates that the nonce is verified
when the comparison indicates that the nonce and the hash
value are substantially the same. The method continues at step
392 where the processing module stores at least some of the
parameter package when the nonce is verified. For example,
the processing module stores a secret exponent and an
encrypted share of the parameter package in a local memory
for subsequent retrieval.

FIG. 12A is a flowchart illustrating example of retrieving a
key. The method begins with step 394 where a processing
module (e.g., of a dispersed storage processing module, a
client) receives a get key request from a requester (e.g., from
a user device). The get key request may be utilized by the
requester to retrieve a key stored as a set of encrypted key
shares in a set of servers. The get key request may include an
alias name, a password, and a certificate authority chain. The
method continues at step 396 where the processing module
transforms the password into a set of n blinded passwords in
accordance with an expression: blinded password x=((MGF
(password))?)’_ modulo p, for x=1 to n.

The method continues at step 398 where the processing
module sends a set of n encrypted key share recovery mes-
sages to a set of n servers. The encrypted key share recovery
message includes one or more of the alias name and a blinded
password of the set of blinded passwords corresponding to the
server. The method continues at step 400 where the process-
ing module receives a decode threshold number of encrypted
key share recovery response messages of a same share revi-
sion. The key share recovery message includes one or more of
an encrypted key share, a blinded key in accordance with an
expression: blinded key x=(blinded password x)° modulo p
(e.g., wherein e is a secret exponent), a share index, a decode
threshold, a share width, a share revision, a client certificate
chain, a challenge identifier (ID), a client challenge, a server
certificate chain, a signature algorithm, and a signature. The
method continues at step 402 where the processing module
verifies the signature.

The method continues at step 404 where the processing
module transforms at least a decode threshold number of
blinded keys into at least a decode threshold number of keys
in accordance with an expression: key x=(blinded key x)",
modulo p, wherein values of v are generated in accordance
with b*v modulo q=1 (e.g., a security parameter constant q
may be based on a value of p in accordance with the expres-
sion q=(p-1)/2). The method continues at step 406 where the
processing module decrypts at least a decode threshold num-
ber of encrypted key shares to produce at least decode thresh-
old number of key shares, wherein each encrypted key share
is decrypted utilizing a corresponding key of the at least
decode threshold number of keys. The method continues at
step 408 where the processing module decodes the at least the
decode threshold number of key shares utilizing a key share
function (e.g., dispersed storage error decoding, a Shamir
shared secret function) to produce a key. The method contin-
ues at step 410 where the processing module outputs the key
to the requester.

FIG. 12B is a flowchart illustrating an example of retriev-
ing an encrypted key share. The method begins with the step
where a processing module (e.g., of a server, an authentica-
tion server, of a dispersed storage (DS) unit) receives an
encrypted key share recovery request message. The method
continues at step 414 where the processing module retrieves
a corresponding secret exponent based on an alias name of the
key share recovery request message. The method continues at
step 416 where the processing module generates a blinded

10

25

40

45

55

32

key based on the secret exponent, a blinded password of the
encrypted key share recovery request message, and in accor-
dance with an expression: blinded key x=(blinded password
x)?, modulo p. The method continues at step 418 where the
processing module retrieves a corresponding encrypted key
share (e.g., based on the alias name).

The method continues at step 420 where the processing
module generates an encrypted key share recovery response
message payload, wherein the payload includes the blinded
key and the encrypted key share. The method continues at
step 422 where the processing module generates a signature,
utilizing a private key associated with the server, for the
encrypted key share recovery response message payload. For
example, the processing module generates a hash of the pay-
load and encrypts the hash utilizing the private key of the
authentication server to produce the signature. The method
continues at step 424 where the processing module outputs an
encrypted key share recovery response message that includes
the encrypted key share recovery response message payload
and the signature.

FIG. 13 is a flowchart illustrating an example of facilitating
access to a dispersed storage network (DSN). The method
begins at step 426 where a processing module receives a DSN
access request message from a requester. The DSN access
request message may include one or more of a request type, a
user identifier (ID), a password, and a data ID (e.g., a data
name, a data file pathname, a directory entry, a source name).
The request type may include a read request, a write request,
a delete request, a list request, etc.

The method continues at step 428 where the processing
module obtains access information associated with the
requester. The access information includes one or more of a
private key, a signed certificate, a signed certificate chain, and
a signature. The obtaining includes one or more of retrieving
from a local memory, receiving from the requester, and facili-
tating execution of a dispersed key storage retrieval process
(e.g., as discussed with reference to FIGS. 12A and 12B. For
example, the processing module executes the dispersed key
storage retrieval process to obtain the private key. As another
example, the processing module sends a get key request mes-
sage to a dispersed storage (DS) processing module and
receives the private key in response.

The method continues at step 430 where the processing
module determines a DS unit storage set of the DSNto access.
The determination may be based on one or more of the user
1D, a vault ID, the data ID, and a data ID to DS unit location
table lookup. The method continues at step 432 where the
processing module sends an authentication request message
to each DS unit of the DS unit set utilizing the access infor-
mation associated with the requester. For example, the pro-
cessing module signs the authentication request utilizing the
private key. The method continues at step 434 where the
processing module facilitates access to the DS unit set. For
example, the processing module writes data to the DS unit set.
As another example, the processing module retrieves data
from the DS unit set. The processing module may discard the
access information when the access to the DS unit set is
complete.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be

US 9,219,604 B2

33

used herein, the term(s) “operably coupled to”, “coupled to”,
and/or “coupling” includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., anitem includes, but is not limited to, a component,
an element, a circuit, and/or a module) where, for indirect
coupling, the intervening item does not modify the informa-
tion of a signal but may adjust its current level, voltage level,
and/or power level. As may further be used herein, inferred
coupling (i.e., where one element is coupled to another ele-
ment by inference) includes direct and indirect coupling
between two items in the same manner as “coupled to”. As
may even further be used herein, the term “operable to” or
“operably coupled to” indicates that an item includes one or
more of power connections, input(s), output(s), etc., to per-
form, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, and/or “processing unit” may be a
single processing device or a plurality of processing devices.
Such a processing device may be a microprocessor, micro-
controller, digital signal processor, microcomputer, central
processing unit, field programmable gate array, program-
mable logic device, state machine, logic circuitry, analog
circuitry, digital circuitry, and/or any device that manipulates
signals (analog and/or digital) based on hard coding of the
circuitry and/or operational instructions. The processing
module, module, processing circuit, and/or processing unit
may be, or further include, memory and/or an integrated
memory element, which may be a single memory device, a
plurality of memory devices, and/or embedded circuitry of
another processing module, module, processing circuit, and/
or processing unit. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-vola-
tile memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital informa-
tion. Note that if the processing module, module, processing
circuit, and/or processing unit includes more than one pro-
cessing device, the processing devices may be centrally
located (e.g., directly coupled together via a wired and/or
wireless bus structure) or may be distributedly located (e.g.,
cloud computing via indirect coupling via a local area net-
work and/or a wide area network). Further note that if the
processing module, module, processing circuit, and/or pro-
cessing unit implements one or more of its functions via a
state machine, analog circuitry, digital circuitry, and/or logic
circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element may store,
and the processing module, module, processing circuit, and/
or processing unit executes, hard coded and/or operational
instructions corresponding to at least some of the steps and/or
functions illustrated in one or more of the Figures. Such a
memory device or memory element can be included in an
article of manufacture.

20

40

45

50

55

34

The present invention has been described above with the
aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these functional
building blocks have been arbitrarily defined for convenience
of description. Alternate boundaries could be defined as long
as the certain significant functions are appropriately per-
formed. Similarly, flow diagram blocks may also have been
arbitrarily defined herein to illustrate certain significant func-
tionality. To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claimed invention. One of average skill in the art
will also recognize that the functional building blocks, and
other illustrative blocks, modules and components herein,
can be implemented as illustrated or by discrete components,
application specific integrated circuits, processors executing
appropriate software and the like or any combination thereof.

The present invention may have also been described, at
least in part, in terms of one or more embodiments. An
embodiment of the present invention is used herein to illus-
trate the present invention, an aspect thereof, a feature
thereof, a concept thereof, and/or an example therecof. A
physical embodiment of an apparatus, an article of manufac-
ture, a machine, and/or of a process that embodies the present
invention may include one or more of the aspects, features,
concepts, examples, etc. described with reference to one or
more of the embodiments discussed herein. Further, from
figure to figure, the embodiments may incorporate the same
or similarly named functions, steps, modules, etc. that may
use the same or different reference numbers and, as such, the
functions, steps, modules, etc. may be the same or similar
functions, steps, modules, etc. or different ones.

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time or
discrete time, and single-ended or differential. Forinstance, if
a signal path is shown as a single-ended path, it also repre-
sents a differential signal path. Similarly, if a signal path is
shown as a differential path, it also represents a single-ended
signal path. While one or more particular architectures are
described herein, other architectures can likewise be imple-
mented that use one or more data buses not expressly shown,
direct connectivity between elements, and/or indirect cou-
pling between other elements as recognized by one of average
skill in the art.

The term “module” is used in the description of the various
embodiments of the present invention. A module includes a
processing module, a functional block, hardware, and/or soft-
ware stored on memory for performing one or more functions
as may be described herein. Note that, if the module is imple-
mented via hardware, the hardware may operate indepen-
dently and/or in conjunction software and/or firmware. As
used herein, a module may contain one or more sub-modules,
each of which may be one or more modules.

While particular combinations of various functions and
features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not

US 9,219,604 B2

35

limited by the particular examples disclosed herein and
expressly incorporates these other combinations.
What is claimed is:
1. A method for execution by a processing module of a first
computing device, the method comprises:
obtaining, by the processing module, a second public key
of'a second computing device, wherein the second pub-
lic key is part of a second public/private key pair of the
second computing device;
receiving, by the processing module, an encrypted secret
exponent from the second computing device, wherein a
secret exponent was encrypted using a shared secret key;
determining, by the processing module, the shared secret
key based on the second public key and a first private key
of'the first computing device using a first modulo prime
polynomial function, wherein a first public key of the
first computing device is generated from the first private
key using a second modulo prime polynomial function
and wherein the second public key is derived using the
second modulo prime polynomial function on a second
private key of the second public/private key pair;
decrypting, by the processing module, the encrypted secret
exponent using the shared secret key to recover the
secret exponent;
generating, by the processing module, an encryption key
based on the secret exponent and a password;
encrypting, by the processing module, a message using the
encryption key to produce an encrypted message; and
outputting, by the processing module, the encrypted mes-
sage to the second computing device, wherein the sec-
ond computing device generates the encryption key
based on the secret exponent and the password.
2. The method of claim 1 further comprises:
generating, the first public key using the second modulo
prime polynomial function by:
generating a primitive root polynomial
generating a prime “p”; and
generating the first public key as a modulo “p” of “g”
raised to a power of the first private key;
wherein the second public key was generated by the second
computing device by:
generating the primitive root polynomial
generating the prime “p”; and
generating the second public key as the modulo “p” of
“g” raised to the power of the second private key.
3. The method of claim 1, wherein the generating the
shared secret key comprises:
obtaining a prime “p”; and
generating the shared secret key as a modulo “p” of the
second public key raised to a power of the first private
key.
4. The method of claim 1, wherein the generating the
shared secret key comprises:
obtaining a prime “p”*;
obtaining a constant “K”;
generating a shared secret as a modulo “p” of the second
public key ofthe other entity raised to a power of the first
private key; and
generating the shared secret key based on the constant K
and the shared secret.
5. The method of claim 1, wherein the encrypting the
message comprises:
encoding data in accordance with an encoding function to
produce a set of encoded shares;
for an encoded share of the set of encoded shares:
generating the encryption key utilizing a mask generat-
ing function (MGF) in accordance with a formula of

[TPRIN

g5

[TPRIN

g5

w

10

15

20

30

35

40

45

55

60

65

36

the encryption key
Word)2)secret exponent modulo a pnme

equaling (MGF(the pass-
“p”;
encrypting the encoded share utilizing the encryption
key to produce an encrypted share; and
generating the message as a parameter package that
includes the encrypted share and the secret exponent.
6. The method of claim 1, wherein generating the shared
secret key comprises:
outputting a key agreement request to the second comput-
ing device, wherein the key agreement request includes
a primitive root polynomial “g”, a prime “p”, and the
first public key; and
receiving a key agreement response from the second com-
puting device, wherein the key agreement response
includes the second public key and authentication infor-
mation.
7. A method for execution by a processing module of a first
computing device, the method comprises:
receiving, by the processing module, an encrypted mes-
sage from a second computing device, wherein the sec-
ond computing device encrypted a message using an
encryption key to produce the encrypted message, and
wherein the second computing device generated the
encryption key based on a secret exponent and a pass-
word,;
receiving, by the processing module, an encrypted secret
exponent, wherein the secret exponent is encrypted
using a shared secret key, wherein the shared secret key
is generated by the second computing device using a first
modulo prime polynomial function on a first public key
of'the first computing device and a second private key of
the second computing device;
obtaining, by the processing module, a second public key
of the second computing device, wherein the second
public key is part of a second public/private key pair of
the second computing device;
generating, by the processing module, the shared secret key
from the second public key and a first private key of the
first computing device using the first modulo prime
polynomial function, wherein the first public key is gen-
erated from the first private key using a second modulo
prime polynomial function;
decrypting, by the processing module, the encrypted secret
exponent using the shared secret key to produce a
decrypted secret exponent;
generating, by the processing module, the encryption key
based on the decrypted secret exponent and the pass-
word; and
decrypting, by the processing module, the encrypted mes-
sage using the encryption key to recapture a message.
8. The method of claim 7 further comprises:
generating, the first public key using the second modulo
prime polynomial function by:
generating a primitive root polynomial “g”;
generating a prime “p”’;
generating the first public key as a modulo “p” of “g”
raised to a power of the first private key;

and

wherein the second public key was generated by the second
computing device by:
generating the primitive root polynomial “g”;
“p;
generating the second public key as the modulo “p” of

[Tty

g” raised to the power of the second private key.

generating the prime and

US 9,219,604 B2

37

9. The method of claim 7, wherein the generating the

shared secret key comprises:

[TPRIN

obtaining a prime “p”; and

generating the shared secret key as a modulo “p” of the
public key of the second computing device raised to a
power of the second private key.

10. The method of claim 7, wherein the generating the

shared secret key comprises:

[TPRIN

obtaining a prime “p”*;
obtaining a constant “K”;
generating a shared secret as a modulo “p” of the second
public key raised to a power of the first private key; and
generating the shared secret key based on the constant K
and the shared secret.
11. The method of claim 7 further comprises:
verifying the message; and
when the message is verified, storing at least a portion of
the message.
12. A dispersed storage (DS) module comprises:
a first module, when operable within a first computing
device, causes the first computing device to:
obtain a second public key of a second computing
device, wherein the second public key is part of a
second public/private key pair of the second comput-
ing device;
receive an encrypted secret exponent from the second
computing device, wherein a secret exponent was
encrypted using a shared secret key;
determine the shared secret key from the second public
key and a first private key of the computing device
using a first modulo prime polynomial function,
wherein a first public key of the first computing device
is generated from the first private key using a second
modulo prime polynomial function and wherein the
second public key is derived using the second modulo
prime polynomial function on a second private key of
the second public/private key pair;
asecond module, when operable within the first computing
device, causes the first computing device to:
decrypt the encrypted secret exponent using the shared
secret key to recover the secret exponent;
generate an encryption key based on the secret exponent
and a password;
encrypt a message using the encryption key to produce
an encrypted message; and
a third module, when operable within the first computing
device, causes the first computing device to:
output the encrypted message to the second computing
device, wherein the second computing device gener-
ates the encryption key based on the secret exponent
and the password.
13. The DS module of claim 12 further comprises:
the first module, when operable within the first computing
device, causes the first computing device to further gen-
erate the first public key using the second modulo prime
polynomial function by:
generating a primitive root polynomial
generating a prime “p”; and
generating the first public key as a modulo “p” of “g”
raised to a power of the first private key;
wherein the second public key was generated by the second
computing device by:
generating the primitive root polynomial
generating the prime “p”; and
generating the second public key as the modulo “p” of

[Tty

g” raised to the power of the second private key.

[TPRIN

g5

[TPRIN

g5

5

10

25

30

40

45

65

38

14. The DS module of claim 12, wherein the first module

functions to generate the shared secret key by:

[TPRIN

obtaining a prime “p”’; and

generating the shared secret key as a modulo “p” of the
second public key raised to a power of the first private
key.

15. The DS module of claim 12, wherein the first module

further functions to generate the shared secret key by:

[TPRIN

obtaining a prime “p”’;

obtaining a constant “K”;

generating a shared secret as a modulo “p” of the second
public key raised to a power of the first private key; and

generating the shared secret key based on the constant K
and the shared secret.

16. The DS module of claim 12, wherein the second mod-

ule functions to encrypt the message by:

encoding data in accordance with an encoding function to
produce a set of encoded shares;
for an encoded share of the set of encoded shares:
generating the encryption key utilizing a mask generat-
ing function (MGF) in accordance with a formula of
the encryption key equaling (MGF(the password)?)
secret exponent mOdulO a prlme “p”;
encrypting the encoded share utilizing the encryption
key to produce an encrypted share; and
generating the message as a parameter package that
includes the encrypted share and the secret exponent.
17. The DS module of claim 12, wherein the first module

further functions to generate the shared secret key by:

outputting a key agreement request to the second comput-
ing device, wherein the key agreement request includes
a primitive root polynomial “g”, a prime “p”, and the
first public key; and
receiving a key agreement response from the second com-
puting device, wherein the key agreement response
includes the second public key and authentication infor-
mation.
18. A dispersed storage (DS) module comprises:
a first module, when operable within a first computing
device, causes the first computing device to:
receive an encrypted message from a second computing
device, wherein the second computing device
encrypted a message using an encryption key to pro-
duce the encrypted message, and wherein the second
computing device generated the encryption key based
on a secret exponent and a password;
receive an encrypted secret exponent, wherein the secret
exponent is encrypted using a shared secret key,
wherein the shared secret key is generated by the
second computing device using a first modulo prime
polynomial function on a first public key of the first
computing device and a second private key of the
second computing device; and
obtain a second public key of the second computing
device, wherein the secret public key is part of a
second public/private key pair of the second comput-
ing device;
a second module, when operable within the first computing
device, causes the first computing device to:
generate the shared secret key from the second public
key and a first private key of the first computing device
using the first modulo prime polynomial function,
wherein the first public key is generated from the first
private key using a second modulo prime polynomial
function; and
a third module, when operable within the first computing
device, causes the first computing device to:

US 9,219,604 B2

39

decrypt the encrypted secret exponent using the shared
secret key to produce a decrypted secret exponent;
generate the encryption key based on the decrypted
secret exponent and the password; and
decrypt the encrypted message using the encryption key
to recapture a message.
19. The DS module of claim 18 further comprises:
the second module, when operable within the first comput-
ing device, causes the first computing device to further
generate the first public key using the second modulo
prime polynomial function by:
generating a primitive root polynomial
generating a prime “p”; and
generating the first public key as a modulo “p” of “g”
raised to a power of the first private key;
wherein the second public key was generated by the second
computing device by:
generating the primitive root polynomial
generating the prime “p”; and
generating the second public key as the modulo “p” of

[Tty

g” raised to the power of the second private key.

[TPRIN

g5

[TPRIN

g5

5

15

20

40

20. The DS module of claim 18, wherein the second mod-

ule functions to generate the shared secret key by:

[TPRIN

obtaining a prime “p”’; and

generating the shared secret key as a modulo “p” of the
second public key raised to a power of the first private
key.

21. The DS module of claim 18, wherein the second mod-

ule functions to generate the shared secret key by:

[TPRIN

obtaining a prime “p”’;

obtaining a constant “K”;

generating a shared secret as a modulo “p” of the second
public key raised to a power of the first private key; and

generating the shared secret key based on the constant K
and the shared secret.

22. The DS module of claim 18 further comprises:

a fourth module, when operable within the first computing
device, causes the first computing device to:
verity the message; and
when the message is verified, store at least a portion of

the message.

